Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
194xyz chia hết cho 40,30 => z =0
194xy0 chia hết cho 40,30,36. Ta có:
40=23.5 ; 30=2.3.5; 36=22.32
BCNN(40;30;36)=23.32.5=360
Vậy: để 194xy0 chia hết cho cả 40;30;60 thì 194xy0 chia hết cho 360 => có 2 số thoả mãn là: 194040 (x=z: loại); 194400 (y=z: loại); 194760(x=7;y=6 và z=0 nhận)
Vậy: Để 194xyz chia hết cho cả 40;36 và 30 thì x=7; y=6 và z=0
Lời giải:
Ta thấy: $n^2+n=n(n+1)$ là tích của 2 số nguyên liên tiếp. Trong 2 số nguyên liên tiếp luôn có 1 số chẵn và 1 số lẻ nên $n^2+n=n(n+1)\vdots 2$
Ta có đpcm.
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
\(\left(n+3\right)⋮\left(n+1\right)\Leftrightarrow\left(n+3\right)-\left(n+1\right)⋮\left(n+1\right)\)
\(\Leftrightarrow2⋮\left(n+1\right)\Leftrightarrow\left(n+1\right)\in\left\{1;2\right\}\Leftrightarrow n\in\left\{0;1\right\}\)
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$
Ta có 4n-5=4(n-1)-1
=> 1 chia hết cho n-1
n thuộc Z => n-1 thuộc Z => n-1\(\in\)Ư(1)={-1;1}
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
\(2n-1⋮n+1\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
6:(n+5)
N=1
n=1
Vì: 6:(1+5)