Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b:Ta có : 2^n +15=2^n + 2.1.3 +3^2
=(2^n +3)^2=(1+3)^2
Suy ra :n=1.Vậy n=1
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1
đừng trả lời, có trả lời nó cũng hổng tick đâu mà chi cho nó mệt
Xét 2 trường hợp :
a) n là số nguyên
n^2 + 2014 = k^2 (k nguyên)
=> k^2 - n^2 = 2014
=> (k + n)(k - n) = 2014
nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn.
Vậy không có n thuộc Z thỏa mãn ĐK đề bài.
b) n là số thực
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44)
=> n^2 = k^2 - 2014 => n = \(\pm\sqrt{k^2-2014}\)
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = \(\pm\sqrt{k^2-2014}\) với k nguyên, k > 44)
Đặt n2+1234=m2
=> (m-n)(m+n)=1234=2x617=1x1234
mà m-n và m+n cùng tính chẵn lẻ
=> không tồn tại n