Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Ta có:
\(n^2+n+4=\left(n^2+n\right)+4=n\left(n+1\right)+4\)
Để \(\left(n^2+n+4\right)⋮\left(n+1\right)\) thì \(4⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\)
n2+n+4 ⋮ n+1
\(\Rightarrow\) n. n + n.1 +4 ⋮ n+1
\(\Rightarrow\) n . ( n+1) + 4 \(⋮\) n+1
Để n . ( n+1) +4 \(⋮\) 4 thì 4 \(⋮\) n+1 { Vì n . ( n+1) \(⋮\) 4}
\(\Rightarrow\) n +1 \(\in\) ( 4 )
\(\Rightarrow\) n+ 1 \(\in\) { \(\pm\) 1; \(\pm\)2; \(\pm\) 4}
\(\Rightarrow\) n \(\in\) { 0; -2 ; 1 ; -3 ; 3 ;-5}
các cậu đừng chúc tớ ngủ ngon vì các cậu đã làm tớ thao thức
a) Ta có: \(3n-1⋮n+3\)
\(\Leftrightarrow3n+9-10⋮n+3\)
mà \(3n+9⋮n+3\)
nên \(-10⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-10\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)
Vậy: \(n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)
Ta có:
n+5 chia hết cho n-2
Mà n-2 chia hết cho n-2
=>(n+5)-(n-2) chia hết cho n-2
=>7 chia hết cho n-2
=> n-2 thuộc {-7;-1;1;7}
=>n thuộc {-5;1;3;9}
Ta có: \(n^2+3n-13=n\left(n+3\right)-13\)
Mà \(n\left(n+3\right)\) chia hết cho n+3
Nên để \(n^2+3n-13\) chia hết thì \(-13\) chia hết cho n(n+3)
\(\Rightarrow n\left(n+3\right)\inƯ\left(13\right)\)
\(n\left(n+3\right)=-13;n\left(n+3\right)=-1;n\left(n+3\right)=1;n\left(n+3\right)=13\)
Ko có TH nào là số nguyên coi lại đề đi bạn
n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3 Mà n(n+3) chia hết cho n+3
=>13 chia hết cho n+3 Mà n thuộc Z
=>n+3 thuộc {-13, -1, 1, 13}
=>n thuộc {-16, -4, -2, 10}
Mà n là giá trị nhỏ nhất
=>n=-16
Vậy n=-16
3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
a)\(n+4⋮n\)
Vì \(n⋮n\)
Nên \(4⋮n\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Vậy \(n\in\left\{1;2;4\right\}\)
b) \(3n+7⋮n\)
Vì \(3n⋮n\)
Nên \(7⋮n\Rightarrow n\in\left(7\right)=\left\{1;7\right\}\)
Vậy \(n\in\left\{1;7\right\}\)
c) \(27-5n⋮n\)\(\left(0< n\le5\right)\)
Ta có : \(5n⋮n\Rightarrow\)phép chia này có số dư bằng 0
Đây là công thức chia hết nè mk chỉ bổ sung thôi chứ trong bài làm bạn đừng ghi thế này nha :
\(a⋮n;b⋮n\left(a\ge b;a\le b\right)\)thì \(a-b;b-a⋮n\)có nghĩa là cùng số dư nha bạn
Mà ta có 5n chia hết cho n
Nên \(27⋮n\Rightarrow n\inƯ\left(27\right)=\left\{1;3;9;27\right\}\)
Mà vì đầu đề bài điều kiện ta cho là \(0< n\le5\)
Nên \(n\in\left\{1;3\right\}\)
n+4 chia hết cho n
Vì n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)
Mà n thuộc N
=> n\(\in\){1; 2; 4}
3n+7 chia heetc ho n
Vì 3n chia hết cho n
=> 7 chia hết cho n
=> n thuộc Ư(7)
Mà n thuộc N
=> n\(\in\){1; 7}
n + 4 chia hết cho n
vì n chia hết cho n
nên 4 chia hết cho n -> n thuộc Ư(4) = (1;2:4)
3n + 7 chia hết cho n
Vì 3n chia hết cho n
Nên 7 chia hết cho n-> n thuộc (7) = (1;7)
27- 5n chia hết cho n( 0 < n<5)
27- 5n chia hết cho n-> phép chia này có số dư bằng 0
A chia hết cho n, b chia hết cho n (a lớn hơn hoặc bằng b; a bé hơn hoặc bằng b)
Thì a – b; b – a thuộc n
Mà ta có 5n chia hết chon
Nên 27 chia hết cho n ->n thuộc Ư(27) = ( 1;3;9;27)
Mà 0 <n<5
Nên n thuộc (1;3)