Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (Có nhiều cách nhưng mình sẽ làm cách dễ hiểu nhất)
A = \(\frac{19}{x+1}.\frac{x}{6}=\frac{19x}{6.\left(x+1\right)}=\frac{19x}{6x+6}\)
Để A là số nguyên
=) \(19x⋮6x+6\)=) \(6.19x⋮6x+6\)=) \(114x⋮6x+6\)(1)
và \(6x+6⋮6x+6\)=) \(19.\left(6x+6\right)⋮6x+6\)=) \(114x+114⋮6x+6\)(2)
-Từ (1) và (2)
=) \(114x+114-114x⋮6x+6\)
=) \(114⋮6x+6\)=) \(6x+6\inƯ\left(114\right)\)
=) \(6x+6=\left\{1;2;3;6;19;38;57;114\right\}\)( Vì \(x\in N\))
=) \(6x=\left\{-5;-4;-3;0;13;32;51;108\right\}\)
=) \(x=\left\{0;18\right\}\)( Vì \(x\in N\)và \(0,108⋮6\))
Vậy \(x=\left\{0;18\right\}\)thì \(\frac{19}{x+1}.\frac{x}{6}\)là số nguyên
b) Để \(\frac{3n+1}{7}\)có giá trị nhỏ nhất
=) \(3n+1\)nhỏ nhất
=) \(3n\)nhỏ nhất =) \(n\)nhỏ nhất
Mà \(n\in N\)=) \(0\le n\)=) \(n=0\)( Vì \(n\)nhỏ nhất )
=) \(\frac{3n+1}{7}=\frac{3.0+1}{7}=\frac{1}{7}\)
=) \(\frac{3n+1}{7}\)có giá trị nhỏ nhất là \(\frac{1}{7}\)khi và chỉ khi \(n=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời