Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=2+\frac{13}{n+1}\)
Để \(2+\frac{13}{n+1}\) là số nguyên <=> \(\frac{13}{n+1}\) là số nguyên
=> n + 1 thuộc Ư(13) = { - 13; - 1; 1; 13 }
=> n = { - 14 ; - 2; 0 ; 12 }
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
\(\frac{15}{n}\in\)Z => 15 chia hết cho n => n \(\in\) Ư(15) = {-1;1;-3;3;-5;5;-15;15} (1)
\(\frac{12}{n+2}\in\)Z => 12 chia hết cho n + 2 => n + 2 \(\in\)Ư(12) = {-1;1;-2;2;-3;3;-4;4;-6;6;-12;12}
=> n \(\in\){-3;-1;-4;0;-5;1;-6;2;-8;4;-14;10} (2)
\(\frac{6}{2n-5}\in\)Z => 6 chia hết cho 2n - 5 => 2n - 5 \(\in\)Ư(6) = {-1;1;-2;2-3;3;-6;6}
=> 2n \(\in\){4;6;3;7;2;8;-1;11}, mà 2n chia hết cho 2
=> 2n \(\in\){4;6;2;8} => n \(\in\){2;3;1;4} (3)
Từ (1), (2), (3) => n \(\in\){1;3;4}
=> 2n+15 chia hết cho n+3
=> 2n+6+9 chia hết cho n+3
=> 2(n+3)+9 chia hết cho n+3
=> 9 chia hết cho n+3
=> n+3 là ước của 9=1;3;9
=> n=0=6. do n=-2 ko thỏa mãn
Tks các bạn nha