\(\frac{15}{n}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

\(\frac{15}{n}\in\)Z => 15 chia hết cho n => n \(\in\) Ư(15) = {-1;1;-3;3;-5;5;-15;15} (1)

\(\frac{12}{n+2}\in\)Z => 12 chia hết cho n + 2 => n + 2 \(\in\)Ư(12) = {-1;1;-2;2;-3;3;-4;4;-6;6;-12;12}

=> n \(\in\){-3;-1;-4;0;-5;1;-6;2;-8;4;-14;10} (2)

\(\frac{6}{2n-5}\in\)Z => 6 chia hết cho 2n - 5 => 2n - 5 \(\in\)Ư(6) = {-1;1;-2;2-3;3;-6;6}

=> 2n \(\in\){4;6;3;7;2;8;-1;11}, mà 2n chia hết cho 2

=> 2n \(\in\){4;6;2;8} => n \(\in\){2;3;1;4} (3)

Từ (1), (2), (3) => n \(\in\){1;3;4}

 

27 tháng 1 2016

giai di minh ti cho nha

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

1 tháng 3 2017

Cho phân số : \(\frac{1+2+3+...+20}{6+7+8+...+36}\)

Hãy xóa một số hạng ở mẫu của phân số trên để giá trị của phân số đó không không đổi

18 tháng 2 2017

Bài 1:

ĐKXĐ:\(n\ne-2\)

Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)

Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)

                          => \(n+2=\left\{-3;-1;1;3\right\}\)

                           => \(n=\left\{-5;-3;-1;1\right\}\)

Mà \(n\in N\)=> n=1

Bài 2:

ĐKXĐ \(a\ne1;-1\)

Để \(\frac{21}{a}\in N\)

Thì \(a\inƯ\left(21\right)\)

=>a={1;3;7;21} (1)

Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)

=>a-1={1;2;11;22}

=>a={1;3;12;23}   (2)

Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)

=> a+1={1;2;4;6;12;24}

=>a={0;1;3;5;11;23}   (3)

Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên

18 tháng 2 2017

ko bit

24 tháng 5 2019

\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)

                                       <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

     Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

24 tháng 5 2019

Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}

n+2\(\in\)Ư(12)

2n-5\(\in\)Ư(6)

=>n=\(\pm\)1;\(\pm\)3,...