Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\)
\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)
\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)
\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)
\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)
\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)
\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
a)Ta có:3n+2=3.(n-1)+5
Mà 3.(n-1) chia hết cho (n-1) nên suy ra
Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)
Suy ra:
n-1 thuộc ước của 5
Đến đây cậu tự làm tiếp nhé. Xin lỗi.
a, 3n + 6 chia hết cho n
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n
=>n ЄƯ {1;2;3;6} vậy n = 1 ; 6 ;2;3
b, (5n-5)chia hết cho n
vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5 phải chia hết cho n
=>n Є {1;5} vậy n = 1 ; 5
Để mk làm tiếp mấy bài còn lại nhé!
c) ta có: 3n + 9 chia hết cho n + 2
=> 3n + 6 + 3 chia hết cho n + 2
3.(n+2) + 3 chia hết cho n + 2
mà 3.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nhé!
d) ta có: 4n + 8 chia hết cho n - 2
=> 4n - 8 + 16 chia hết cho n - 2
4.(n-2) + 16 chia hết cho n - 2
mà 4.(n-2) chia hết cho n - 2
=> 16 chia hết cho n - 2
...
e) ta có: 3n + 8 chia hết cho 2n + 1
=> 2.(3n+8) chia hết cho 2n + 1
6n + 16 chia hết cho 2n + 1
6n + 3 + 13 chia hết cho 2n + 1
3.(2n+1) + 13 chia hết cho 2n + 1
mà 3.(2n+1) chia hết cho 2n + 1
=> 13 chia hết cho 2n + 1
...
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
3n+5 chia hết cho n-1
=>3n-3+8 chia hết cho n-1
=>3.(n-1)+8 chia hết cho n-1
=>8 chia hết cho n-1
=>n-1 \(\in\)Ư(8)={1;2;4;8}
Ta có bảng sau:
n-1 | 1 | 2 | 4 | 8 |
n | 2 | 3 | 5 | 9 |
Vậy n\(\in\){2;3;5;9}
2n+3 chia hết cho n-2
=>2n-4+7 chia hết cho n-2
=>2.(n-2)+7 chia hết cho n-2
=>7 chia hết cho n-2
=>n-2 \(\in\)Ư(7)={1;7}
Ta có bảng sau :
n-2 | 1 | 7 |
n | 3 | 9 |
Vậy n \(\in\){3;9}
3n+7 chia hết cho n
3n chia hết cho n
và 7 chia hết cho n
n thuộc Ư(7)={1;7} vì n thuộc N
n=1;7
Trả lời
Vì 3n chia hết cho n =>5 phải chia hết cho n
=>n thuộc Ư(5)={1;5}
Vậy n{1;5}
Hok tốt