Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}

a, \(\frac{n+5}{n-2}\)=\(\frac{n-2}{n-2}\)+\(\frac{7}{n-2}\)=1+\(\frac{7}{n-2}\)=>7 chia hết cho n-2 => n-2 thuộc ước của 7 = (-1;-7;1;7) . Ta có :
n-2=-7=> n=-5 ; n-2=-1=>n=1;n-2=1=>n=3;n-2=7=>n=9.
vậy n=-5;-1;3;9 thì n+5 chia hết cho n-2
c, \(\frac{n^2+3}{n-1}\)=\(\frac{n^2-1}{n-1}\)+\(\frac{4}{n-1}\)=>4 chia hết cho n-1 .
Đến đây giải tương tự phần a , chúc bạn hóc tốt.

Gọi biểu thức trên là B. Ta có : Nếu n chẵn => n.( n+1) chẵn => n.(n+1) chia hết cho 2 => n.(n+1).(2n+1) chia hết cho 2
Nếu n lẻ => n.(n+1) chẵn +=> n.(n+1) chia hết cho 2 => n.(n+1).(2n+1) chia hết cho 2 => B chia hết cho 2 (1)
nếu n chia hết cho 3 => B chia hết cho 3
Nếu n chia 3 đư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => B chia hết cho 3
Nếu n chia 3 dư 2 thì n+1 chia hết cho 3=> B chia hết cho 3 (2)
Từ (1) và (2) suy ra B chia hết cho 2 và 3.

n=n-2+2 vì n chia hết cho n-2 nên 2 phải chia hết cho n-2
suy ra n-2 thuộc U(2)={1;2)
TH1: n-2=1 thì n=3
TH2; n-2=2 thì n=4
Vậy n=3 hoặc n=4

20124n+3-3
=20124n.20123-3
=.......6 . ........8 - 3
=.............5 chia hết cho 5

a)n+2={1;2;4;8;16}
n={-1;0;2;6;14}
b)(n-4)chia hết cho(n-1)
(n-1-3) chia hết cho(n-1)
Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)
Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}
suy ra n={1;4;0;-2}
c) 2n+8 thuộc B(n+1)
suy ra n+1 chia het cho 2n+8
suy ra 2n+2 chia het cho 2n+8
suy ra (2n+8)-6 chia het cho2n+8
Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8
suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}
mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)
suy ra 2n+8 thuộc{2;6;-2;-6}
suy ra 2n thuộc{-6;-2;-10;-14}
suy ra n thuộc {-3;-1;-5;-7}
d) 3n-1 chia het cho n-2
suy ra [(3n-6)+5chia hết cho n-2
Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2
suy ra n-2 thuộc{1;5;-1;-5}
suy ra n thuộc{3;7;1;-3}
e)3n+2 chia hết cho 2n+1
suy ra [(6n+3)+1] chia hết cho 2n+1
Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1
suy ra 2n+1 thuộc{1;-1}
suy ra 2n thuộc {0;-2}
suy ra n thuộc {0;-1}
Ta có
\(\frac{\left(n-2\right)+3}{n-2}=1+\frac{3}{n-2}\)
Để (n-2)+3 chia hết cho (n-2)
Thì 3 phải chia hết cho n-2
Hay n-2 thuộc Ư(3)
n-2 thuộc(1;3)
n=(3;5)