Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
2n+ 2n-2 = 2n + 2n : 22 = 5/2
=> (2^n).2 = 5/2 . 4
2^n . 2 = 10
2^n = 10 : 2
2^n = 5
Vậy không tồn tại n
\(2^n+2^{n-2}=\frac{5}{2}\)
\(2^n:2^2=\frac{5}{2}-\frac{2^n}{1}=\frac{5-2^{n+1}}{2}\)
\(2^n=\frac{5-2^{n+1}}{2}.2^2=2.\left(5-2^{n+1}\right)\)
\(2^n=10-2^{n+2}\)
(3.x)^2 : 3^3=243
9.x^2 : 27=243
9.x^2=243.27
9.x^2=6561
x^2=6561:9
x^2=729
X=27
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
a) Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng
+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81
Thật vậy:
10k + 1 + 72(k + 1) - 1
= 10k.10 + 72k + 72 - 1
= 10k + 72k + 9.10k + 72 - 1
= (10k + 72k - 1) + 9.10k + 72
đến đây tui ... chịu :))
x3y5+3x3y5+5x3y5+...+(2k-1)x3y5 =3249x3y5
x3y5.[1+3+5+...+(2k-1)]=3249x3y5
=>1+3+5+...+(2k-1)=3249
\(\frac{\left(2k-1+1\right).\left[\left(2k-1-1\right):2\right]}{2}=3249\)
\(\frac{2k.\left[\left(2k-2\right):2+1\right]}{2}=3249\)
\(\frac{2k.\left(k-1+1\right)}{2}=3249\)
\(k^2=3249\)
\(k=57\)
\(27^n.9^n=9^{27}.81\)
\(\Rightarrow\left(3^3\right)^n.\left(3^2\right)^n=\left(3^2\right)^{27}.3^4\)
\(\Rightarrow3^{3n}.3^{2n}=3^{54}.3^4\)
\(\Rightarrow3^{5n}=3^{58}\)
\(\Rightarrow5n=58\)
\(\Rightarrow n=\frac{58}{5}\)
Mà đề cho n là số tự nhiên nên không có số tự nhiên n nào thỏa mãn điều kiện trên.
\(27^n.9^n=9^{27}.81\)
\(\left(3^3\right)^n.\left(3^2\right)^n=\left(3^2\right)^{27}.3^4\)
\(3^{3n}.3^{2n}=3^{54}.3^4\)
\(3^{5n}=3^{58}\)
\(\Rightarrow n=58:5\)
\(n=\frac{58}{5}\)
\(^{3^n}\). \(^{2^n}\)= \(216\)
<=> \(^{6^n}\)= \(^{6^3}\)
<=>n=3
3n.2n=216⇔6n=63⇔n=3