Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\)
\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)
\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)
\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)
\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)
\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)
\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
a)Ta có:3n+2=3.(n-1)+5
Mà 3.(n-1) chia hết cho (n-1) nên suy ra
Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)
Suy ra:
n-1 thuộc ước của 5
Đến đây cậu tự làm tiếp nhé. Xin lỗi.
Vì 396 : a dư 30 nên a > 30
Theo bài ra ta có :
396 chia a dư 30
=> ( 396 - 30 ) \(⋮\)a => 366 \(⋮\)a
Lại có : 473 chia a dư 23
=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a
Từ (1) và (2) => a \(\in\)ƯC( 366;450)
Ta có : 366 = 2 .3 . 61
450 = 2 . 32 . 52
Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6
=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }
Vậy a \(\in\){1;2;3;6}
a) Theo bài ra ta có : 3n + 5 chia hết cho 2n + 1 => 2(3n + 5) chia hết cho 3(2n + 1)
=> 2(3n + 5) - 3(2n + 1) chia hết cho 2n + 1
=> 6n + 10 - 6n - 3 chia hết cho 2n + 1
=>7 chia hết cho 2n + 1
=> 2n +1 thuộc Ư(7)={1;7}
Ta có : 2n + 1 = 1 => n = 0
2n + 1 = 7 => n = 3
Vậy n= 0 hoặc n= 3
b) Theo bài ra ta có : 3n +1 chia hết cho 2n - 1 => 2(3n +1) chia hết cho 3(2n - 1)
=> 3(2n - 1) - 2(3n +1) chia hết cho 2n -1
=> 6n - 3 - 6n -2 chia hết cho 2n -1
=> 1 chia hết cho 2n - 1
=> 2n - 1 = 1
Ta có : 2n - 1 = 1 => n = 1
Vậy n = 1
=>
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
1
A, \(\frac{N-1}{N-3}\)=> N - 1 CHIA HẾT CHO N - 3
=> N + 3 - 4 CHIA HẾT CHO N - 3
=> N - 3 E Ư(4) = { -1 ; -2 ; -4 ; 1 ; 2 ; 4 }
TA CÓ BẢNG
N - 3 | -1 | -2 | -4 | 1 | 2 | 4 |
N | 2 | 1 | -1 | 4 | 5 | 7 |
VẬY N = { 2 ; 1 ; -1 ; 4 ; 5 ; 7 }
MÌNH CHỈ LÀM ĐƯỢC CÂU A THÔI NHÉ