Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.


Vì cộng cả tử và mẫu của phân số \(\dfrac{23}{40}\) với cùng một số tự nhiên n rồi rút gọn ta được \(\dfrac{3}{4}\) nên ta được:
\(\dfrac{23+n}{40+n}=\dfrac{3}{4}\)
\(\Rightarrow\)\(4.\left(23+n\right)=3.\left(40+n\right)\)
hay 92 + 4.n = 120 + 3.n
4.n - 3.n = 120 - 92
\(\Rightarrow\) n = 28
Vậy số tự nhiên n cần tìm là 28

1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6
Ta có: n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
=> 15 chia hết cho n - 6.
=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}
=> n thuộc {7; 9; 11; 21}
2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản
=> 12n + 1 và 30n + 2 có UCLN là d (d > 1)
d là ước chung của 12n + 1 và 30n + 2
=> d là ước của 30n + 2 - 2(12n + 1) = 6n
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm.
chứng minh 12n + 1/30n + 2
gọi a là ƯC của 12n + 1 và 30n + 2
=> 12n + 1 chia hết cho a
=> 12n chia hết cho a
1 chia hết cho a
=> a = 1
vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)
Giả sử phân số trên chưa tối giản
\(\Rightarrow\) 10n - 23 và 5n + 6 có ước chung là số nguyên tố
Gọi số nguyên tố d là ước chung của 10n - 23 và 5n+6
\(\Rightarrow\) \(10n-23⋮d\)
\(5n+6⋮d\)
\(\Rightarrow\)\(\left\{{}\begin{matrix}10n-23⋮d\\10n+12⋮d\end{matrix}\right.\)
\(\Rightarrow35⋮d\)
Do d là số nguyên tố, \(35⋮d\) nên d=5;7
+,\(d=5\Rightarrow5n+6⋮5\)(vô lí)
\(+,d=7\Rightarrow10n-23⋮7\)
Mà \(7⋮7\)
\(\Rightarrow10n-30⋮7\)
\(\Rightarrow10\left(n-3\right)⋮7\)
\(\Rightarrow n-3⋮7\\\)(do 10,7 nguyên tố cung nhau)
\(\Rightarrow n=7k+3\left(k\in N\right)\)
Khi n= 7k+3 thì 5n+6=5(7k+3)+6=35k+21 chia hết cho 7
Vậy n=7k+3 thì phân số trên rút gọn được
\(\Rightarrow n\in\left\{3;10;17;24;31;38;.......;2012;2019;..;2047;2054\right\}\)
Vậy n thuộc N và 2010<n<2050 có số giá trị là:
2054-2012):7+1=6 (giá trị)
đáp số: 6
de lam cau a
