Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử phân số trên chưa tối giản
\(\Rightarrow\) 10n - 23 và 5n + 6 có ước chung là số nguyên tố
Gọi số nguyên tố d là ước chung của 10n - 23 và 5n+6
\(\Rightarrow\) \(10n-23⋮d\)
\(5n+6⋮d\)
\(\Rightarrow\)\(\left\{{}\begin{matrix}10n-23⋮d\\10n+12⋮d\end{matrix}\right.\)
\(\Rightarrow35⋮d\)
Do d là số nguyên tố, \(35⋮d\) nên d=5;7
+,\(d=5\Rightarrow5n+6⋮5\)(vô lí)
\(+,d=7\Rightarrow10n-23⋮7\)
Mà \(7⋮7\)
\(\Rightarrow10n-30⋮7\)
\(\Rightarrow10\left(n-3\right)⋮7\)
\(\Rightarrow n-3⋮7\\\)(do 10,7 nguyên tố cung nhau)
\(\Rightarrow n=7k+3\left(k\in N\right)\)
Khi n= 7k+3 thì 5n+6=5(7k+3)+6=35k+21 chia hết cho 7
Vậy n=7k+3 thì phân số trên rút gọn được
\(\Rightarrow n\in\left\{3;10;17;24;31;38;.......;2012;2019;..;2047;2054\right\}\)
Vậy n thuộc N và 2010<n<2050 có số giá trị là:
2054-2012):7+1=6 (giá trị)
đáp số: 6

Theo đề bài ta có : \(\frac{23+n}{40+n}=\frac{3}{4}\)
=> \(\left(23+n\right)\cdot4=\left(40+n\right)\cdot3\)
=> \(92+4n=120+3n\)
=> \(4n-3n=120-92\)
=> \(n=28\)
Vậy số tự nhiên n cần tìm là 28
Theo bài ra ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow120+3n=92+4n\)
\(\Leftrightarrow120+3n-92-4n=0\)
\(\Leftrightarrow28-n=0\Leftrightarrow n=28\)
Vậy n = 28

\(\text{a) Để B có giá trị nguyên thì}\)
\(10n⋮\left(5n-3\right)\)
\(\Rightarrow[2.\left(5n-3\right)+6⋮\left(5n-3\right)\)
\(\text{mà }\)\(2.\left(5n-3\right)⋮\left(5n-3\right)\)
\(\Rightarrow6⋮\left(5n-3\right)\)
\(\Rightarrow5n-3\in1;2;3;6;-1;-2;-3;-6\)
\(\Rightarrow5n\in4;5;6;9;2;1;0;-3\)\(\text{Vì }n\in Z\)
\(\Rightarrow n=0\text{hoặc}n=1\)
\(\text{b) Ta có}:B=\frac{10n}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
\(\text{Để B đạt GTLN thì }\frac{6}{5n-3}\text{đạt GTLN}\)
\(\text{Vì }6>0\Rightarrow\frac{6}{5n-3}\text{đạt GTLN khi}\) \(5n-3\text{ đạt GTLN }\)\(\Rightarrow\hept{\begin{cases}5n-3\text{ đạt GTNN}\\5n-3>0\end{cases}}\)
\(\Rightarrow5n-3=2\Rightarrow n=1\)
\(\text{Vậy GTLN của A là}\)\(5\)\(\text{khi }n=1\)

Theo bài ra ta có : \(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Rightarrow4.\left(23+n\right)=3.\left(40+n\right)\)
\(\Rightarrow92+4n=120+3n\)
\(\Rightarrow4n-3n=120-92\)
\(\Rightarrow n=28\)
Vậy số n cần tìm là 28

Để A có giá trị nguyên
10n chia hết cho 5n -3
5n+3+5n-3 chia hết cho 5n-3
5n+3 chia hết cho 5n-3
5n-3+6 chia hết cho 5n-3
6 chia hết cho 5n-3
5n-3 thuộc {-6;-3;-2;-1;1;2;3;6}
Giải theo thứ tự, ta có:
5n-3=-6=>5n=-3=>n=-3/5(loại)
5n-3=-3=>5n=0=>n=0(chọn)
5n-3=-2=>5n=1=>n=1/5(loại)
5n-3=-1=>5n=2=>n=2/5(loại)
5n-3=1=>5n=4=>n=4/5(loại)
5n-3=2=>5n=5=>n=1(chọn)
5n-3=3=>5n=6=>n=6/5(loại)
5n-3=6=>5n=9=>n=9/5(loại)
n thuộc {0;1} (1)
Để B có giá trị nguyên
n+1 chia hết cho n-2
n-2+3 chia hết cho n-2
3 chia hết cho n-2
n-2 thuộc {-3;-1;1;3}
Giải theo thứ tự, ta có:
n-2=-3=>n=-1(chọn)
n-2=-1=>n=1(chọn)
n-2=1=>n=3(chọn)
n-2=3=>n=5(chọn)
n thuộc {-1;1;3;5} (2)
Từ (1) và (2) suy ra n=1
Vậy n=1
tích dùm mình với