K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

theo đề bài ta có: 13 la bội của(n+2)

nên 13 chia hết cho (n+2)

nên(n+2) thuộc Ư(13)

nên (n+2) là 1 hoặc 13

mà(n+2) không thể là 1 vì khi n là stn thì n+2 không thể là 1

do đó ta loại 1

vậy (n+2)=13

       n      =13-2

      n       =11

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

8 tháng 6 2019

a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)

Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)

\(\Rightarrow21⋮n-2\)

\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)

20 tháng 7 2020

\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{15}{n-2}\)

\(\Rightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

n - 21-13-35-515-15
n315-17-317-13

Vì \(n\in Z\)nên x ta tìm thỏa mãn 

20 tháng 7 2020

Ta có :

\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=1+\frac{15}{n-2}\)

Để \(\frac{n+13}{n-2}\)tối giản thì \(\frac{15}{n-2}\) tối giản ( thuộc Z )

\(\Rightarrow n-2\in\left\{-15;-5;-1;1;5;15\right\}\)

\(\Rightarrow n\in\left\{-13;-3;1;3;7;17\right\}\) ( thỏa mãn n thuộc Z )

5 tháng 6 2017

mk ko bit

???

tk nha good luck

a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)

\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)

n + 11-12-2
n0-21-3

b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13

c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13