Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để n.(n+6) là số nguyên tố thì n=1 và n+6 là số nguyên tố
Vậy khi n=1 thì n+6=7 là số nguyên tố
n2 + 5n + 1 = n ( n + 5 ) + 1
Với n \(\\ \in \) N thì n + 5 > 1
=> n2 + 5n + 1 thì n = 1
vì 10/n^2+4 là số nguyên tố chẵn nên p=2
=>10/n^2+4=2=>n^2+4=5=>n^2=1=>n=1
thì nước sâu quá
BẠN TICK CHO MIK NHA,CẢM ƠN BẠN RẤT NHIỀU
Bài 1
a,
Gọi d là ƯCLN(6n+5;4n+3)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\)
\(\Rightarrow12n+10-\left(12n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
b, Vì số nguyên dương nhỏ nhất là số 1
=> x+ 2016 = 1
=> x= 1-2016
x= - 2015
Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)
\(6n+5⋮d\Rightarrow12n+10⋮d\)
\(4n+3⋮d\Rightarrow12n+9⋮d\)
Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)
Vậy ta có đpcm
A+C , Số cần tìm là 3: Bởi vì nếu số cần tìm là p\(\ne\)3
Thì p chia 3 dư 1 hoặc 2
Ta có p = 3n +1 hoặc p= 3n +2
=> p + 2 = 3n+1+2 =3n +3( chia hết cho 3 không phải là số nguyên tố)
p + 4 = 3n +2 + 4=3n+6 ( chia hết cho 3 không phải là số nguyên tố)
p+ 10= 3n+2 +10= 3n+12 ( chia hết cho 3 không phải là số nguyên tố)
p + 14=3n +1+14 = 3n+15( chia hết cho 3 không phải là số nguyên tố)
B) Câu B đề hơi lạ nên mình đoán đại luôn ^^ ( nếu có thêm p+14 là số nguyên tố thì giải tương tự câu A và C )
TH1: n=0
\(\left(0-2\right)\left(2^2+10\right)=-2\cdot\left(4+10\right)=-28\) không là số nguyên tố
=>Loại
TH2: n=1
\(\left(n-2\right)\left(n^2+10\right)=\left(1-2\right)\left(1^2+10\right)=11\cdot\left(-1\right)=-11\) không là số nguyên tố
=>Loại
TH3: n=2
\(\left(n-2\right)\left(n^2+10\right)=\left(2-2\right)\left(2^2+10\right)=0\)
=>Loại
TH4: n=3
\(\left(n-2\right)\left(n^2+10\right)=\left(3-2\right)\left(3^2+10\right)=19\) là số nguyên tố
=>Nhận
TH5: n>3
=>n-2>1; n2+10>1
=>\(\left(n-2\right)\left(n^2+10\right)>1\)
=>(n-2)(n2+10) không là số nguyên tố
=>Loại
vậy: n=3
Để $(n-2)(n^2+10)$ là số nguyên tố thì \(\left[{}\begin{matrix}n-2=1\\n^2+10=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=3\\n^2=-9\left(\text{vô lí}\right)\end{matrix}\right.\Rightarrow n=3\)
Thay \(n=3\) vào \(\left(n-2\right)\left(n^2+10\right)\), ta được:
\(\left(3-2\right)\left(3^2+10\right)=1.19=19\)
Vì \(19\) là số nguyên tố nên \(n=3\) là giá trị cần tìm.