Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
a) \(2^n+22\)
Với \(n\ge1\)thì \(2^n⋮2,22⋮2\)khi đó \(2^n+22⋮2\)mà \(2^n+22>2\)nên khi đó \(2^n+22\)là hợp số.
Với \(n=0\): \(2^n+22=23\)thỏa mãn.
Vậy \(n=0\).
b) \(13n\)
Với \(n\ge2\)thì \(13n⋮13\)mà \(13n>13\)nên là số hợp số.
\(n=1\)thỏa mãn.
a,
1000! = 1.2.3...1000
+) Các số chứa đúng lũy thừa 73 (= 343) từ 1 đến 1000 là: 343; 686 => có 2 x 3 = 6 thừa số 7
+) Các số chứa lũy thừa 72 từ 1 đến 1000 là: 49; .....; 980 => có (980 - 49) : 49 + 1= 20 số , trừ 2 số 343; 686
=> có 18 số chứa đúng lũy thừa 72 => 18 x 2 = 36 thừa số 7
+) Các số chứa lũy thừa 7 từ 1 đến 1000 là: 7 ; 14; ...; 994 => có (994 - 7) : 7 + 1 = 142 số , trừ 20 chứa 72 trở lên
=> có 142 - 20 = 122 số chứa đúng 1 thừa số 7
Vậy có tất cả 6 + 36 + 122 = 164 thừa số 7
=> 1000! phân tích ra thừa số nguyên tố chứa 7164
b,
n2 + 2n = n2 + 2n.1 = n2 + 2n.1 + 1 - 1 = n2 + 2n.1 + 12 - 1 = (n2 + 2n.1 + 12) - 1
Sử dụng hằng đẳng thức: (Bạn tự tìm hiểu về 7 hằng đẳng thức đáng nhớ)
\(\Rightarrow\) (n+1)2 - 1
mà (n+1)2 là số chính phương
\(\Rightarrow\) (n+1)2 - 1 chỉ có thể là 0
\(\Rightarrow\) n chỉ có thể là 0
-Nếu n là số chẵn thì n4+4n là số chẵn lớn hơn 2 nên là hợp số
-Nếu n là số lẻ , đặt n=2k+1 với k là số tự nhiên lớn hơn 0
n4+42k+1=(n2)2+(2.4k)2-2.n2.2.4k
=(n2+2.4k)2-(2n.2k)2
=(n2+2.4k-2n.2k)(n2+2.4k+2n.2k)
Vì n2+2n.4k+2n.2k > n2+2.4k-2n.2k=n2+4k-2n.2k+4k
=(n-2k)2+4k>4
Suy ra n4+42k+1 là hợp số
Vậy n4+4n là hợp số với mọi số tự nhiên n >1
cảm ơn bạn nha