Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+7 chia hết cho n+2
n+7 =( n+2)+5 chia hết cho n+2
mà n+2 chia hết cho n+2 =>5 chia hết cho n+2
n+2 \(\in\)Ư(5)
n+2 \(\in\){-1;-5;1;5}
n \(\in\){-3;-8;-2;3}
n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư ( 5 )
=> n + 2 thuộc { 1 ; - 1 ; 5 ; - 5 }
=> n thuộc { - 1 ; - 3 ; 3 ; - 7 }
TI - CK CHO MÌNH NHÉ
a) \(n-4⋮n-1\)
ta có \(n-1⋮n-1\)
mà \(n-4⋮n-1\)
\(\Rightarrow n-4-\left(n-1\right)⋮n-1\)
\(\Rightarrow n-4-n+1\) \(⋮n-1\)
\(\Rightarrow-3\) \(⋮n-1\)
\(\Rightarrow n-1\in\text{Ư}_{\left(-3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)
lập bảng giá trị
\(n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(2\) | \(0\) | \(4\) | \(-2\) |
vậy \(n\in\text{ }\left\{2;0;4;-2\right\}\)
a) n - 4 \(⋮\)n - 1
Ta có : n - 4 = (n - 1) - 3
Do n - 1 \(⋮\)n - 1
Để (n - 1) - 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
Với : n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -5
Vậy n = {2; 0 ; 4 ; -5} thì n - 4 \(⋮\)n - 1
3n - 4 ⋮ 2 - n <=> 3n - 4 ⋮ n - 2
<=> 3n - 6 + 2 ⋮ n - 2
<=> 3(n - 2) + 2 ⋮ n - 2
Vì 3(n - 2) ⋮ n - 2 . Để 3(n - 2) + 2 ⋮ n - 2 <=> 2 ⋮ n - 2
=> n - 2 thuộc ước của 2 là - 2; - 1; 1; 2
=> n - 2 = { - 2; - 1; 1; 2 }
=> n = { 0 ; 1 ; 3 ; 4 }
Vậy n = { 0 ; 1 ; 3 ; 4 }
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}