K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: ĐKXĐ: \(n\ne-\dfrac{1}{2}\)

Để \(\dfrac{3n+2}{2n+1}\) nguyên thì \(3n+2⋮2n+1\)

=>\(6n+4⋮2n+1\)

=>\(6n+3+1⋮2n+1\)

=>\(1⋮2n+1\)

=>\(2n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-1\right\}\)(nhận)

2:

ĐKXĐ: n<>-1/5

Để \(\dfrac{8n+12}{5n+1}\) là số nguyên thì

\(8n+12⋮5n+1\)

=>\(40n+60⋮5n+1\)

=>\(40n+8+52⋮5n+1\)

=>\(52⋮5n+1\)

=>\(5n+1\in\left\{1;-1;2;-2;4;-4;13;-13;26;-26;52;-52\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{5};\dfrac{1}{5};-\dfrac{3}{5};\dfrac{3}{5};-1;\dfrac{12}{5};-\dfrac{14}{5};5;-\dfrac{27}{5};\dfrac{51}{5};-\dfrac{53}{5}\right\}\)

mà n nguyên

nên \(n\in\left\{0;-1;5\right\}\)

10 tháng 12 2016

a) Gọi ƯC cua 2n+1 ; 3n+1 là d

\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)

b) Gọi ƯC cua 5n+6 và 8n+7 là d

\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)

 

 

31 tháng 3 2017

c)7n+10 và 5n+7

Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*

\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)

\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)

Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d

35n+50-35n-49 \(⋮\)d

(35n-35n)+(50-49)\(⋮\)d

0 + 1 \(⋮\)d

1 \(⋮\)d

Vì:1\(⋮\)d nên d\(\in\)Ư(1)

Mà:Ư(1)={1} nên d=1

Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau

24 tháng 11 2015

gọi  UCLN﴾2n + 1 ; 6n + 5﴿ là d 

ta có :

2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d

6n + 5 chia hết cho d

=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d

=>2 chia hết cho d

=> d thuộc Ư﴾2﴿ = {1;2}

Mà 2n + 1 ; 6n + 5 lẻ nên n = 1

=>UCLN(..)=1

=>ntcn

13 tháng 12 2017

mình ko biet làm nha

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên