\(\frac{-32}{-2^n}=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

\(\frac{-32}{-2^n}=4\)

\(\Leftrightarrow-2^n=-8\)

\(\Leftrightarrow n=3\)

22 tháng 8 2020

\(\frac{-32}{-2^n}=4\)   

\(\frac{32}{2^n}=4\)   

\(\frac{2^5}{2^n}=2^2\)    

\(2^{5-n}=2^2\)   

5 - n = 2

n  =3

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn 

27 tháng 7 2018

a) \(\frac{-32}{\left(-2\right)^n}=4\)

\(\frac{\left(-2\right)^5}{\left(-2\right)^n}=4\)

\(\left(-2\right)^{5-n}=\left(-2\right)^2\)

=> 5-n = 2

n = 3

b) \(\frac{8}{2^n}=2\)

\(\frac{2^3}{2^n}=2\)

\(2^{3-n}=2^1\)

=> 3 -n = 1

n = 2

c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)

\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)

=> 2n -1 = 3

2n = 4

n = 2

27 tháng 7 2018

a) \(\frac{-32}{\left(-2\right)^n}=4\Leftrightarrow\left(-2\right)^n=\frac{-32}{4}\)

\(\left(-2\right)^n=-8\)Mà \(-8=2^{-3}\)

\(\Rightarrow x=-3\)

b) \(\frac{8}{2^n}=2\Leftrightarrow2^n=\frac{8}{2}\)

\(2^n=4\)  Mà \(4=2^2\Rightarrow x=2\)

c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\Rightarrow\left(\frac{1}{2}\right)^{2n}:\frac{1}{2}=\frac{1}{8}\)

\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{8}\cdot\frac{1}{2}\)

\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{16}\Leftrightarrow\frac{1}{2^{2n}}=\frac{1}{16}\)   mà\(16=2^4\)

\(2n=4\Rightarrow n=2\)

Vậy .........................

3 tháng 7 2019

1. \(\left(\frac{1}{2}\right)^n=\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^n=\frac{1^5}{2^5}\)

\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^5\)

Vậy \(n=5\)

2. \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

Vậy \(n=3\)

3. \(\frac{16}{2^n}=2\)

\(2^n=\frac{16}{2}\)

\(2^n=8=2^3\)

Vậy \(n=3\)

3 tháng 7 2019

1. (1/2)2 = 1/32 <=> (21)= (25)n <=> 1.n = 5.1 <=> n = 5

=> n = 5

2) 343/125 = (7/5)n <=> (7/5)3 = (7/5)n <=> 3 = n

=> n = 3

3) 16/2n = 2 <=> 16.2n <=> 2n = 2/16 <=> 2n = 1/8 <=> 2n = 8 <=> 2n = 23 <=> n = 3

=> n = 3

25 tháng 8 2017

2^n:2^5=2^2

          n=5+2

          n=7

24 tháng 8 2019

a) \(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)

\(\Leftrightarrow3^{3n-2}=3^n\)

\(\Leftrightarrow3n-2=n\)

\(\Leftrightarrow2n=2\)

\(\Leftrightarrow n=1\)

24 tháng 8 2019

b)\(3^{-2}.3^4.3^n=3^7\)

\(\Leftrightarrow3^{2+n}=3^7\)

\(\Leftrightarrow2+n=7\)

\(\Leftrightarrow n=5\)

27 tháng 9 2019

1) 3^1994+4^1993-3^1992

  = 3^1992.(9+3-1)=3^1992.11 chia hết cho 11

=> 3^1994+3^1993-3^1992 chia hết cho 11

27 tháng 9 2019

Có ai bt bài 2 ko z 

29 tháng 10 2016

a)

\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)

\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)

\(\Rightarrow9^n=3^n\)

\(\Rightarrow\left(3^2\right)^n=3^n\)

\(\Rightarrow3^{2n}=3^n\)

\(\Rightarrow2n=n\)

\(\Leftrightarrow n=0\)

Vậy \(n=0\)

29 tháng 10 2016

d) Ta có:

\(6^{3-n}=216\)

\(\Rightarrow6^{3-n}=6^3\)

\(\Rightarrow3-n=3\)

\(\Rightarrow n=3-3\)

\(\Rightarrow n=0\)

Vậy \(n=0\)\(\text{ }\)

21 tháng 12 2018

Ta có (-2) mũ n phần 16 =-32

   => (-2) mũ n=-32×16=-512=(-2) mũ 9

 => (-2) mũ n =(-2 )mũ 9 

=> n =9 ( thỏa mãn đề bài) 

Vậy n=9

21 tháng 12 2018

\(\frac{\left(-2\right)^n}{16}=-32\)

=> \(\left(-2\right)^2:16=-32\)

\(\left(-2\right)^n=-32.16\)

\(\left(-2\right)^n=-512\)

=> \(\left(-2\right)^n=\left(-2\right)^8\)

=> n = 8

Vậy n= 8

#Ori_deeptry