Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cứ hai đường thẳng không tính thứ tự thì sẽ có 1 giao điểm phân biệt với mọi giao điểm khác
nên ta có phương trình sau :
\(\frac{n\times\left(n-1\right)}{2}=780\Leftrightarrow\left(n-40\right)\left(n+39\right)=0\Leftrightarrow\orbr{\begin{cases}n=40\\n=-39\end{cases}}\)
mà n là số tự nhiên nên n =40 hay có 40 đường thẳng
Chọn một đường thẳng cắt n-1 đường thẳng còn lại ta được n-1 giao điểm
Làm tương tự với n-1 đường thẳng còn lại ta được tất cả : (n-1)xn giao điểm
Như vậy mỗi giao điểm đã được tính hai lần
Vây số đường thẳng thực có là:(n-1)xn:2(giao điểm)
Theo bài ta có 780 giao điểm
(n-1)xn:2=780
(n-1)xn=780x2=1560
Vì (n-1)xn là tích của hai số tự nhiên liên tiếp.Mà 1560=39x40
n=40
Vậy n=40
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu