Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên thì 2n+3 \(⋮\) 4n+1
Ta có 2n+3 \(⋮\)4n+1
=> 4n+6 \(⋮\)4n+1
=> (4n+1)+5 \(⋮\)4n+1
=> 5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }
Ta có bảng :
4n+1 | -1 | -5 | 1 | 5 |
4n | -2 | -6 | 0 | 4 |
n | không có | không có | 0 | 1 |
Mà n \(\in\)N
+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)
+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )
Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
b, Gọi d \(\in\)UC(2n+3;4n+1)
Ta có 2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d
4n+1 \(⋮\)d
Suy ra 2(2n+3) - (4n+1) \(⋮\)d
4n+6 - 4n+1 \(⋮\)d
5 \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }
+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5
(5n+5).(n+4) \(⋮\)5
n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)
Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5
Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản
1, A=\(\frac{2n+3}{\text{4n + 1}}\)
A=\(\frac{4n+6}{\text{4n + 1}}\)
A=\(\frac{4n+1+5}{\text{4n + 1}}\)
A=1+\(\frac{5}{\text{4n + 1}}\)
Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.
Vậy n\(\in\){0;1} thì A là số tự nhiên
a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1
để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)
ta có bảng: n-1 1 3
n 2 4
Vậy 2 STn đó là 2 hoặc 4
b, Gọi d là ƯC(n+1;2n+1)
ta có: n+1/2n+1=2n+2/2n+1
d= (2n+2)-(2n+1)= 1
Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1
=) phân số đó tối giản
Xem cách giải mình nhé bạn, đúng thì nhé!
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
\(\frac{n^3+2n^2+1}{n^2-1}\)
Ta có:n3+2n2+1=(n2-1)(n+2)-(n-3)
=>n3+2n2+1 chia hết cho n2+1
<=>dư = 0 hay n-3=0<=>n=3