K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

.ta có 
n^5 - n + 2 = (n - 1)*n*(n + 1)*(n^2 + 1) + 2 
do (n - 1)*n*(n + 1) là tích của 3 sô liên tiếp nên chia hết cho 3 
=> n^5 - n + 2 = 3k + 2 
=> n^5 - n + 2 chia 3 dư 2 
+ xét các sô chính phương có dạng (3n)^2 
(3n + 1)^2 = 9n^2 + 6n + 1 và (3n + 2)^2 = 9n^2 + 6n + 4 
=> các sô chính phương chia 3 dư 0 hoạc 1 
Vậy không tồn tại số chính phương có dạng n^5 - n + 2 

8 tháng 5 2016

Ta có 
n^5 - n + 2 = (n - 1) x n x (n + 1) x (n^2 + 1) + 2 
Do (n - 1)*n*(n + 1) là tích của 3 sô liên tiếp nên chia hết cho 3 
=> n^5 - n + 2 = 3k + 2 
=> n^5 - n + 2 chia 3 dư 2 
+ Xét các sô chính phương có dạng (3n)^2 
(3n + 1)^2 = 9n^2 + 6n + 1 và (3n + 2)^2 = 9n^2 + 6n + 4 
=> Các sô chính phương chia 3 dư 0 hoặc1 
Vậy không tồn tại số chính phương có dạng n^5 - n + 2 

14 tháng 2 2018

Đang bận nên hướng dẫn

a )Đặt  \(n^2-n+2=a^2\) (a thuôc Z)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)

Đến đây  phân tích ước của  7 ra ; tự lm đc

b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10

=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP 

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

2 tháng 8 2023

 Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

  Dễ thấy nếu \(5|n\)\(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)

 Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).

 Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.

11 tháng 8 2017

[[[[[[[[[[[[[[[ơ

4 tháng 4 2016

Ta có:

\(n^5-n\)  luôn chia hết cho  \(5\)  với mọi  \(n\in Z\)

Thật vậy,  \(n^5-n=n\left(n^4-1\right)=\left(n^2-1\right).n.\left(n^2+1\right)\)

Với  \(n=5k\)  thì  \(n\)  chia hết cho  \(5\)

Với  \(n=5k+1\)  hay  \(n=5k-1\)  thì  \(n^2-1\)  chia hết cho  \(5\)

Với  \(n=5k+2\)  hay  \(n=5k-2\)  thì  \(n^2+1\)  chia hết cho  \(5\)

Do đó,  \(n^5-n+2\)  chia cho  \(5\)  thì dư  \(2\)

Khi đó,  \(D\)  phải có chữ số tận cùng là  \(2\)  và  \(7\)

Đối chiếu với khái niệm về số chính phương, thì  \(D\)  không thỏa mãn các điều kiện trên để là số chính phương.

Vậy,  không có giá trị  \(n\)  để  \(D\)  là số chính phương

5 tháng 4 2016

bạn có thể giải cụ thể cho mk đk k?