Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
a
\(5\frac{4}{7}:x+=13\)
\(\frac{39}{7}:x=13\)
\(x=\frac{39}{7}:13\)
\(x=\frac{3}{7}\)
\(\frac{4}{7}x=\frac{9}{8}-0,125\)
\(\frac{4}{7}x=1\)
\(x=1:\frac{4}{7}\)
\(x=\frac{7}{4}=1\frac{3}{4}\)
\(5,\left(x\cdot0,5-\frac{3}{7}\right):\frac{1}{2}=1\frac{1}{7}\)
\(\Leftrightarrow x\cdot0,5:\frac{1}{2}-\frac{3}{7}:\frac{1}{2}=1\frac{1}{7}\)
\(\Leftrightarrow x-\frac{6}{7}=\frac{8}{7}\)
\(\Leftrightarrow x=2\)
\(6,x\cdot1,75=1\frac{3}{10}+45\%\)
\(\Leftrightarrow x\cdot\frac{7}{4}=\frac{13}{10}+\frac{9}{20}\)
\(\Leftrightarrow x\cdot\frac{7}{4}=\frac{7}{4}\)
\(\Leftrightarrow x=1\)
\(7,\frac{5-x}{15}+\frac{5}{12}-\frac{1}{8}=\frac{3}{8}\)
\(\Leftrightarrow\frac{5-x}{15}=\frac{3}{8}-\frac{5}{12}+\frac{1}{8}\)
\(\Leftrightarrow\frac{5-x}{15}=\frac{1}{12}\)
\(\Leftrightarrow60-12x=15\)
\(\Leftrightarrow12x=45\)
\(\Leftrightarrow x=\frac{15}{4}\)
\(8,\left|x-\frac{25}{33}\right|-\frac{3}{11}=\frac{2}{3}\)
\(\Leftrightarrow\left|\frac{x-25}{33}\right|=\frac{31}{33}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{25}{33}=\frac{31}{33}\\x-\frac{25}{33}=-\frac{31}{33}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{56}{33}\\x=-\frac{2}{11}\end{cases}}\)
\(9,-\frac{9}{8}+\frac{-3}{8}\cdot x=-\frac{1}{8}\)
\(\Leftrightarrow\frac{-9}{8}+\frac{-3}{8}\cdot x+\frac{1}{8}=0\)
\(\Leftrightarrow-1-\frac{3}{8}x=0\)
\(\Leftrightarrow\frac{3}{8}x=-1\)
\(\Rightarrow x=-\frac{8}{3}\)
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...
Theo đầu bài ta có:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\left(x+1\right)}\right)\cdot2=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=17\)
dài :vv
a) \(\left|2x-5\right|=4\Leftrightarrow\hept{\begin{cases}2x-5=4\\2x-5=-4\end{cases}\Leftrightarrow\hept{\begin{cases}2x=9\\2x=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{2}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\frac{1}{3}-\left|\frac{5}{4}-2x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left|\frac{5}{4}-2x\right|=\frac{1}{12}\Leftrightarrow\hept{\begin{cases}\frac{5}{4}-2x=\frac{1}{12}\\\frac{5}{4}-2x=-\frac{1}{12}\end{cases}\Leftrightarrow\hept{\begin{cases}2x=\frac{7}{6}\\2x=\frac{4}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{7}{12}\\x=\frac{2}{3}\end{cases}}}\)
Bài 1 :
a) \(|2x-5|=4\)
\(\Rightarrow\orbr{\begin{cases}2x-5=4\\2x-5=-4\end{cases}\Rightarrow}\orbr{\begin{cases}2x=9\\2x=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\frac{1}{3}-\left|\frac{5}{4}-2x\right|=\frac{1}{4}\)
\(\Rightarrow\left|\frac{5}{4}-2x\right|=\frac{1}{12}\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{12}\\\frac{5}{4}-2x=-\frac{1}{12}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{7}{6}\\2x=\frac{4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{12}\\x=\frac{2}{3}\end{cases}}}\)
c) \(\left|\frac{-2}{3}\right|+\left|x-\frac{1}{3}\right|=\left|-1\right|-\left|\frac{-1}{3}\right|\)
\(\Rightarrow\frac{2}{3}+\left|x-\frac{1}{3}\right|=1-\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}+\left|x-\frac{1}{3}\right|=\frac{2}{3}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=0\Rightarrow x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
d) \(\left|-\frac{1}{2}\right|-\left|x+\frac{1}{4}\right|=\left|-\frac{3}{4}\right|\)
\(\Rightarrow\frac{1}{2}-\left|x+\frac{1}{4}\right|=\frac{3}{4}\)
\(\Rightarrow\left|x+\frac{1}{4}\right|=-\frac{1}{4}\)
Vì \(\left|x\right|\ge0\Rightarrow\)ko có gtri nào của x thỏa mãn đề bài
Bài 2 :
a) \(\left|x-1\right|=3x+2\)
\(\Rightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}\Rightarrow\orbr{\begin{cases}x-3x=2+1\\x+3x=-2+1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{-1}{4}\end{cases}}\)
b|) \(\left|9+x\right|=2x\Rightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2x=-9\\x+2x=-9\end{cases}\Rightarrow\orbr{\begin{cases}-x=-9\\3x=-9\end{cases}\Rightarrow}\orbr{\begin{cases}x=9\\x=-3\end{cases}}}\)
c) \(\left|x+6\right|-9=2x\Rightarrow\left|x+6\right|=2x+9\)
\(\Rightarrow\orbr{\begin{cases}x+6=2x+9\\x+6=-2x-9\end{cases}\Rightarrow}\orbr{\begin{cases}x-2x=9-6\\x+2x=-9-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=3\\3x=-15\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt ^^
Đề sai thì phải ! Học Lớp 7 mới giải xong bài này !
\(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{9}\cdot\left(3^3\right)^n=3^n\)
\(\frac{1}{9}\cdot3^{3n}=3^n\)
\(\frac{1}{9}=3^n\text{ : }3^{3n}\)
\(\frac{1}{9}=3^{-2n}\)
\(\frac{1}{3^2}=\frac{1}{3^{2n}}\)
\(\Rightarrow\text{ }3^{2n}=3^2\)
\(3^{2n}-3^2=0\)
\(3\left(3^{2n-1}-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3=0\text{ ( Vô lí ) }\\3^{2n-1}-3=0\end{cases}}\) \(\Rightarrow\text{ }3^{2n-1}=3\) \(\Rightarrow\text{ }2n-1=1\) \(\Rightarrow\text{ }2n=2\) \(\Rightarrow\text{ }n=1\)
Vậy \(n=1\)
Ta có:
\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot5^n\)
\(2^n\left(\frac{1}{2}+4\right)=9\cdot5^n\)
\(\frac{9}{2}\cdot2^n=9\cdot5^n\)
Tức: \(9\cdot\frac{1}{2}\cdot2^n=9\cdot5^n\)
Suy ra: \(2^{n-1}=5^n\)
Nhận thấy: \(n-1< n\)
Hơn nữa \(2< 5\)
Do đó: \(2^{n-1}< 5^n\)
Vậy không có n thỏa mãn