Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=2.22+3.23+....+n*2n
2A=2.23+3.24+...+n.2n+1
=>A-2A=2.22+(3.23-2.23)+(4.24-3.24)+...+(n-n+1).2n-n.2n+1
=>A=2.22+23+...+2n-n.2n+1=22+(22+23+...+2n+1)-(n+1)2n+1
=>A=-22-(22+23+...+2n+1)+(n+1)2n+1
đặt B=22+23+...+2n+1=>2B=23+...+2n+1=>2B-B=2n+2-22
=>B=2n+2-22
vậy A=22-2n+2+22+(n+1)2n+1=(n+1)2n+1-2n+2=2n+1(n+1-2)=(n-1)2n+1=2(n-1)2n
theo bài cho A=2(n-1)2n=2n+10=>2(n-1)=210=>n-1=29=512=>n=513
vậy n=513
A = 2.22 + 3.23 + 4.24 + ... + n.2n
2.A = 2.23 + 3.24 + 4.25 + ...+ n.2n+1
=> A - 2.A = 2.22 + (3.23 - 2.23) + (4.24 - 3.24) + ...+ (n - n + 1).2n - n.2n+1
=> A = 2.22 + 23 + 24 + ..+ 2n - n.2n+ 1 = 22 + (22 + 23 + ....+ 2n+ 1) - (n+1).2n+1
=> A = - 22 - (22 + 23 + ....+ 2n+ 1) + (n+1).2n+1
Tính B = 22 + 23 + ....+ 2n+ 1 => 2.B = 23 + ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22
Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n
Theo bài cho A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 29 = 512 => n = 513
Vậy.............
\(\Rightarrow\left(15:3\right)^{2n}=625\\ \Rightarrow5^{2n}=5^4\Rightarrow n=2\left(B\right)\)
[n^2-4]^2 \(\ge0\); [n-2]^10 \(\ge0\)
=> [n^2-4]^2 + [n-2]^10 \(\ge\)0
mà
(n^2-4)^2+(n-2)^10=0
=> [n^2-4]^2 = [n-2]^10=0 => n^2 -4 = n-2=0 => n^2 = 4 ; n =2
=> n = 2
Vậy n= 2
đúng nha
\(\left(2^2:4\right).2^n=4\)
\(\Rightarrow\left(4:4\right).2^n=4\Rightarrow1.2^n=2^2\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
Vậy \(n=2\)
\(\left(2^2:4\right).2^n=4\)
\(\Leftrightarrow\left(4:4\right).2^n=4\)
\(\Leftrightarrow1.2^n=4\)
\(\Leftrightarrow2^n=4\)
\(\Leftrightarrow2^n=2^2\)
\(\Leftrightarrow n=2\)