
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Đặt A = 2.22 + 3.23 + 4.24 + ... + n.2n
2A = 2.23 + 3.24 + 4.25 + ... + n.2n+1
2A - A = (2.23 - 3.23) + (3.24 - 4.24) + ... + [(n-1).2n - n.2n] + n.2n+1
A = -23 - 24 - ... - 2n + n.2n+1 - 2.22
A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23
Đặt B = 23 + 24 + ... + 2n
2B = 24 + 25 + ... + 2n+1
2B - B = 24 + 25 + ... + 2n+1 - 23 - 24 - 2n
B = 2n+1 - 23
Mà A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23
=> A = n.2n+1 - B - 23
=> A = n.2n+1 - (2n+1 - 23) - 23
A = n.2n+1 - 2n+1 + 23 - 23
A = (n-1).2n+1
Mà 2.22+ 3.23 + 4.24 + 5.25 + · · · + n.2n = 2n+10
=> A = 2n+10
=> (n-1).2n+1 = 2n+10
(n-1) = 2n+10 : 2n+1
n-1 = 29
n = 512 + 1
n = 513

a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...

a)\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(VL\right)\\x^2=4\Rightarrow x=2,-2\end{cases}}}\)VL là vô lý do bình phương luôn là số dương
Ủng hộ minhf bằng cachs k đúng nha
[n^2-4]^2 \(\ge0\); [n-2]^10 \(\ge0\)
=> [n^2-4]^2 + [n-2]^10 \(\ge\)0
mà
(n^2-4)^2+(n-2)^10=0
=> [n^2-4]^2 = [n-2]^10=0 => n^2 -4 = n-2=0 => n^2 = 4 ; n =2
=> n = 2
Vậy n= 2
đúng nha