Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
Mà (n - 1)(n + 1) chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 \(\in\) Ư(4) = {-1;1;-2;2;-4;4}
=> n \(\in\) {0;2;-1;3;-3;5}
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
=>13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {1; -1; 13; -13}
=> n thuộc {-2; -4; 10; -16}
\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\)
\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)
\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)
\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)
\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)
\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)
\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
a)Ta có:3n+2=3.(n-1)+5
Mà 3.(n-1) chia hết cho (n-1) nên suy ra
Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)
Suy ra:
n-1 thuộc ước của 5
Đến đây cậu tự làm tiếp nhé. Xin lỗi.
\(2n+3⋮n-1\)
\(\Rightarrow2\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy..............................
\(n^2-5⋮n+4\)
\(\Rightarrow n\left(n+4\right)-4n+5⋮n+4\)
\(\Rightarrow4n+5⋮n+4\)
\(\Rightarrow4\left(n+4\right)-11⋮n+4\)
\(\Rightarrow11⋮n+4\Rightarrow n+4\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{-3;-5;7;-15\right\}\)
Vậy.........................
Ta có: n2 + 3n + 13 = n( n+ 3 ) + 13 chia hết cho n + 3
=> 13 chia hết cho n + 3 => n + 3 thuộc Ư(13) = { - 13 ; - 1 ; 1; 13 }
Ta có bảng :
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
Mà n nhỏ nhất
=> n = - 16
Vậy n =-16
3x + 30 ⋮ x + 3
3x + 9 + 21 ⋮ x + 3
3(x + 3) + 21 ⋮ x + 3
=> 21 ⋮ x + 3
Hay x + 3 là ước của 21 là - 21 ; - 7 ; - 3; - 1; 1; 3; 7; 21
=> x + 3 = { - 21 ; - 7 ; - 3; - 1; 1; 3; 7; 21 }
=> x = { - 24; - 10; - 6 ; - 4 ; - 2 ; 0 ; 4 ; 18 }
Vậy x = { - 24; - 10; - 6 ; - 4 ; - 2 ; 0 ; 4 ; 18 }
3n + 30 chia hết cho n + 3
3n + 9 + 21 chia hết cho n + 3
3.(n + 3) + 21 chia hết cho n + 3
=> 21 chia hết cho n + 3
=> n + 3 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Ta có bảng sau :