Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n-3⋮n+1\)
\(\Rightarrow2n+2-5⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow-5⋮n+1\)
\(\Rightarrow n+1\inƯC\left(-5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-2;0;-6;4\right\}\)
Có 2n-3 chia hết cho n+1
=>2(n+1)-5 chia hết cho n+1
=>5 chia hết cho n+1
=>n+1 thuộc Ư(5)={1;5;-1;-5}
Với n+1=1 =>n=0
....
Mấy cái còn lại bn tự làm nha
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
15 chia hết cho 2n-3
=>2n-3 thuộc Ư(15)={1;3;5;15}
=>2n={-2;0;2;12}
=>n={-1;0;1;6}
Lưu ý là lớp 6 không cần thiết phải viết dấu "=>".
a. Với số tự nhiên n.
Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)
=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)
=> \(3n+15-3n-12⋮n+4\)
=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)
=> \(3⋮n+4\)
=> \(n+4\in\left\{1;3\right\}\)
+) Với n + 4 = 1 vô lí vì n là số tự nhiên.
+) Với n + 4 = 3 vô lí vì n là số tự nhiên
Vậy không có n thỏa mãn.
b) Với số tự nhiên n.
Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và \(2\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)
=> \(4n+20-4n-10⋮2n+5\)
=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)
=> \(10⋮2n+5\)
=> \(2n+5\in\left\{1;2;5;10\right\}\)
+) Với 2n + 5 = 1 loại
+) với 2n + 5 = 2 loại
+) Với 2n + 5 =5
2n = 5-5
2n = 0
n = 0 Thử lại thỏa mãn
+ Với 2n + 5 = 10
2n = 10 -5
2n = 5
n = 5/2 loại vì n là số tự nhiên.
Vậy n = 0.
Gọi ƯCLN(2n+1005;4n+2011)=d(\(d\in\)N*)
\(\Rightarrow2n+1005⋮d\Rightarrow4n+2010⋮d\Rightarrow4n+2011-4n-2010⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
gọi d là ƯC(2n+1005,4n+2011)(d\(\in\)N*)
theo bài ra ta có
2n+1005\(⋮\)d\(\Rightarrow\)2(2n+1005)\(⋮\)d\(\Rightarrow\)4n+2010\(⋮\)d
4n+2011\(⋮\)d
\(\Rightarrow\)(4n+2011)-(4n+2010)\(⋮\)d
\(\Rightarrow\)4n+2011-4n+2010\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
vậy với mọi n \(\in\)N thì \(\dfrac{2n+1005}{4n+2011}\) là phân số tối giản
\(3-2n⋮n+1\)
\(\Leftrightarrow-2n+3⋮n+1\)
\(\Leftrightarrow-2\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\RightarrowƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+1 | -1 | 1 | -5 | 5 |
n | -2 | 0 | -6 | 4 |
KL | tm | tm | tm | tm |
(4n - 20) ⋮ (2n + 3) (đk n \(\in\) Z)
4n + 6 - 26 ⋮ 2n + 3
2.(2n + 3) - 26 ⋮ 2n + 3
26 ⋮ 2n + 3
2n + 3 \(\in\) Ư(26) = {-26; -13; -2; -1; 1; 2; 13; 26}
Lập bảng ta có:
Theo bảng trên ta có:
n \(\in\) {-5; -2; -1; 5}