Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2)
ta có
= 2015 +2015^2+2015^3+2015^4+2015^5+2015^6
= (2015 +2015^2)+(2015^3+2015^4)+(2015^5+2015^6)
= (2015.1+2015.2015)+ ... +(2015^5.1+2015^5.2015)
= 2015.2016+...+2015^5.2016
= 2016.(2015+2015^3+2015^5) chia hết cho 2016
=> (2015 +2015^2+2015^3+2015^4+2015^5+2015^6) chia het cho 2016
\(\frac{n-4}{2016}+\frac{n-3}{2015}=\frac{n-2}{2014}+\frac{n-1}{2013}\)
\(\Rightarrow\left(\frac{n-4}{2016}+1\right)+\left(\frac{n-3}{2015}+1\right)=\left(\frac{n-2}{2014}+1\right)+\left(\frac{n-1}{2013}+1\right)\)
\(\Rightarrow\frac{n-4+2016}{2016}+\frac{n-3+2015}{2015}=\frac{n-2+2014}{2014}+\frac{n-1+2013}{2013}\)
\(\Rightarrow\frac{n+2013}{2016}+\frac{n+2013}{2015}=\frac{n+2013}{2014}+\frac{n+2013}{2013}\)
\(\Rightarrow\frac{n+2013}{2016}+\frac{n+2013}{2015}-\frac{n+2013}{2014}-\frac{n+2013}{2013}=0\)
\(\Rightarrow\left(n+2013\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\ne0\)
=> n + 2013 = 0 => n = -2013
Vậy n = -2013
Bài 1: Tìm x,y biết (x+1)2+(y-1)2=0
vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2\ge0\) để có dấu"=" chỉ khi cả hai số hạng cùng=0 \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
A=(n-1)2+2016
\(\left(n-1\right)^2\ge0\Rightarrow\left(n-1\right)^2+2016\ge2016\Rightarrow GTNN.A=2016\)
Bài 3: Tìm giá trị lớn nhất của biểu thức:
B=2016-(n-1).2 ; \(B=2016-\left(n-1\right).2\) Không có Gia trị Lớn nhất Vì khi n càng nhỏ hơn so với 1 B càng lớn
\(B=2016-\left(n-1\right)^2\) lập luân tương tự bài 2 GTLN B=2016
Bài 4: Chứng minh:
a, (2n+2+4n+2+2016) chia hết cho 4
\(a=2^{n+2}+4^{^{n+2}}+2016=2^2.2^n+4.4^{n+1}+4.504=4.\left(2^n+4^{n+1}+504\right)\)=> a chia hết cho 4
b, (3n+3n+1+3n+2) chia hết cho 13
\(b=3^n\left(1+3^1+3^2\right)=3^n.13=13.3^n\)=> b chia hết cho13
n = 63 nha