\(2^{n+2}-3.2^{n-1}=5.2^4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2^n\cdot4-3\cdot2^n\cdot\dfrac{1}{2}=5\cdot2^4\)

\(\Leftrightarrow2^n\cdot2.5=5\cdot2^4\)

\(\Leftrightarrow2^n=32\)

hay n=5

1 tháng 8 2019

Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)

\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(M=\left(2^3+2^4+...+2^n\right)\)

\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)

\(\Rightarrow M=2^{n+1}-2^3\)

\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)

\(\Rightarrow\left(n-1\right)=2^9\)

\(\Rightarrow n=513\)

1 tháng 8 2019

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)

\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)

\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)

\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)

Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)

\(\Rightarrow n-1=512\)

\(\Rightarrow n=513\)

7 tháng 10 2020

Ta có: \(2\cdot2^2+3\cdot2^2+...+n\cdot2^2=2^{n+10}\)

\(\Leftrightarrow2^2\cdot\left(2+3+...+n\right)=2^{n+10}\)

\(\Leftrightarrow\frac{\left(n+2\right)\left[\left(n-2\right)\div1+1\right]}{2}=2^{n+8}\)

\(\Leftrightarrow\left(n+2\right)\left(n+1\right)=2^{n+9}\)

Mà trong n+1 và n+2 luôn tồn tại 1 số lẻ và 2n+9 là lũy thừa của 2 nên ta xét 2 TH sau:

Nếu \(n+1=1\Rightarrow n=0\) thử lại ta thấy không thỏa mãn

Nếu \(n+2=1\Rightarrow n=-1\left(ktm\right)\) vì n là STN

Vậy không tồn tại số n thỏa mãn

20 tháng 8 2016

\(\frac{\left(4.3^{22}+7.3^{21}\right).57}{\left(19.27^4\right)^2}=\frac{3^{21}\left(4.3+7\right).57}{19^2.\left[\left(3^3\right)^4\right]^2}=\frac{3^{21}.19.57}{19^2.3^{24}}=\frac{3^{22}.19^2}{19^2.3^{24}}=\frac{1}{3^2}=\frac{1}{9}\)

9 tháng 11 2015

to biet tra loi nhung dai lam khong biet danh mu

 

30 tháng 3 2017

21537

27 tháng 7 2018

\(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)

\(\Rightarrow\hept{\begin{cases}x-1=19\\x+1=21\end{cases}\Rightarrow\hept{\begin{cases}x=20\\x=20\end{cases}}}\)

\(5.2^x+3.2^{x+2}=5.2^5+3.2^7\)

\(\Rightarrow\hept{\begin{cases}x=5\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=5\end{cases}}}\)

P/s:Kết quả thì chắc chắn đúng nhưng cách trình bày bài giải có thể sai,mong bn thông cảm =.=

23 tháng 1 2020

Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n 

<=> S = 2S - S = (2.23 + 3.24 +  4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)

                S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22

                   = -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8

Đặt A = 23 + 24 + 25 + ... + 2n

  <=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n

  <=> A = 2n + 1 - 23 

Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8

              = 2n - 1.(n - 1) = 2n + 34

         => n - 1 = 2n + 34 : 2n - 1

          => n - 1 = 2n + 34 - n + 1

          => n - 1 = 235

          => n = 235 + 1

23 tháng 1 2020

N=34359738369 nha