Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là a.theo bài ra ta có:
a chia 3;4;5;6 dư 1
=>a-1 chia hết cho 3;4;5;6
=>a-1 chia hết cho 60
=>a-1 thuộc {0;60;120;180;240;300;...}
=>a thuộc {1;61;121;181;241;301;...}
vì a chia hết cho 7=>a=301
vậy a=301
Ta gọi A là số cần tìm
A : 2,3,4,5 và 6 dư 1
Suy ra A+1 chia hết cho 2,3,4,5 và 6
Suy ra A+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
6=2x3
Suy ra BCNN(2,3,4,5,60=22 x3=12
Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12
Suy ra A+1 thuộc 1,12,24,36
Ta có bảng sau:
A+1 | 1 | 12 | 24 | 36 |
A | 0 | 11 | 23 | 35 |
VÌ A chia hết cho 7 nên A sẽ bằng 35
Giải
Gọi số tự nhiên đó là :a
Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>
Ta có: 2=2
3=3
2=2.2
5=5
6=2.3
suy ra BCNN<2,3,4,5,6>=2.2.3.5=60
suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)
suy ra a=(1,61,121,181,241,301,...)
Mặt khác a chia hết cho 7suy ra=241
Vậy số tự nhiên nhỏ nhất cần tìm là:241
Gọi số tự nhiên nhỏ nhất đó là a (a thuộc N*)
Theo bài ra: a:2 dư 1
a:3 dư 1
a:4 dư 1
a:5 dư 1
a:6 dư 1
=> a-1 chia hết cho 2,3,4,5,6
=> a-1 thuộc BC(2,3,4,5,6)
Mà a là số tự nhiên nhỏ nhất nên a-1= BCNN(2,3,4,5,6)
Ta có 4=2 mũ 2
6=2.3
Do đó BCNN(2,3,4,5,6)=60
=>BC(2,3,4,5,6)=B(60)
=> a-1 thuộc {0,60,120,180,240,300,..}
=> a thuộc {1,61,121,181,241,301,..}
Lại có: a chia hết cho 7
=> a= 301
Vậy số tự nhiên cần tìm là 301
goi so can tim la a
a la so tu nhien nho nhat chia het cho 7=> a thuoc B(7)
ma a:2 du 1, chia cho 3 du 1, chia cho 4 du 1, chia cho 5 du 1, chia cho 6 du 1=> a thuoc BC(2,3,4,5,6,)+1
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)={0;60;120;180;240;300;...}
BC(2,3,4,5,6)+1={1;121;181;241;301;...}
ma chi co 301 chia het cho 7=> a=301
vay so can tim la 301
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
a) Gọi số đó là a
a chia cho 2 dư 1 => a - 1 chia hết cho 2
a chia cho 3 dư 1 => a - 1 chia hết cho 3
a chia cho 4 dư 1 => a - 1 chia hết cho 4
a chia cho 5 dư 1 => a - 1 chia hết cho 5
a chia cho 6 dư 1 => a - 1 chia hết cho 6
=> a - 1 \(\in\) BC (2;3;4;5;6) = B (60) = {0;60;120;180;240;300;360;...}
=> a \(\in\) {1;61;121;181;241;301;361;...}
Mà a chia hết cho 7 và nhỏ nhất .thử lần lượt các giá trị ta được a = 301
Vậy ...
b) Gọi số tổng quát là n
Ta có : n - 1 chia hết cho 60 => n - 1 - 300 chia hết cho 60 => n - 301 chia hết cho 60
Lại có n chia hết cho 7 ; 301 chia hết cho 7 => n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420 => n - 1 = 420k => n = 420k + 1 ( k thuộc N)
Vậy dạng tổng quát của số đó là: n = 420k + 1 ( k thuộc N)