Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số cần tìm là ab
ab = (a + b) x 2
a x 10 + b = a x 2 + b x 2
a x 8 = b x 1
=> a = 1 ; b = 8
Số cần tìm là 18
Cách 1 : Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có.
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại :
175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2 :
Tương tự cach 1 ta có :
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nêna, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 × a × b × c.
Vì a × 5 × b × c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 × a + 10 × b + 5 = 25 × a × b.
20 × a + 2 × b +1 = 5 × a × b.
Vì a × 5 × b chia hết cho 5 nên 2 × b + 1 chia hết cho 5. Vậy 2 × b có tận cùng bằng 4 hoặc 9, nhưng 2 × b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 × a × 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 × a + 15 = 35 × a. Tính ra ta được a = 1.
Thử lại: 175 = 5 × 7 × 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 × a × b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
Số đó gấp 5 lần tích các chữ số của nó nên : Số đó chia hết cho 5 => Tận cùng là 0 và 5
Số đó không thể có tận cùng là 0 vì số có hai chữ số có tận cùng là 0 sẽ luôn luôn gấp 10 lần tích các chữ số của nó
VD : 10 : 1 + 0 = 1
50 : 5 + 0 = 5
=> Số đó có tận cùng là 5
Ta thử :
15 : Không
25 : Không
35 : Không
45 : 4 + 5 = 9
Vậy số đó : 45
Gọi số cần tìm là ab, ta có: 5a + 5b = ab
=> 10a + b = 5a + 5b
=> 5a = 4b vì a; b là các số có 1 chữ số nên: => a = 4 và b = 5
=> ab = 45.
Vì số đó gấp \(21\)lần tích các chữ số của nó nên số đó chia hết cho \(21\)nên có thể là các số: \(21,42,63,84\).
Ta thử từng trường hợp.
- \(21\): \(2\times1\times21=42\)do đó không thỏa mãn.
Với các trường hợp khác cũng không thỏa mãn.
Vậy không có số nào thỏa mãn yêu cầu bài toán.
Gọi số đó là abc
=> 100a + 10b + c = 5.a.b.c
=> c chia hết cho 5 =>c = 5
20a + 2b + 1 = 5.a.b ( <=> ( 5a - 2 )( 4 - b ) + 9 = 0 => b > 4)
2b + 1 chia hết cho 5 => b = 2,7 ( 2 loai )
b = 7 => a = 1
Thử lại : 1 x 7 x 5 = 35 ; 175 : 35 = 5
Vậy số đó là 175
Gọi số đó là abc
=> 100a+10b+c = 5.a.b.c
=> c chia het cho 5 =>c=5
20a +2b +1 =5.a.b (<=> (5a- 2) (4-b) +9=0 => b>4)
2b+1 chia het cho 5 => b=2,7(2 loai)
b=7 => a=1
Vậy số cần tìm là 175
Gọi số đó là abc.Ta có
abc = a x b x c x5
Từ đó ta thấy abc phải chia hết cho 5 =>c=5 vì nếu c= 0 thì a x b x c x 0=0
Vậy abc = a x b x5 x 5= a x b x 25 =>abc chia hết cho 25
Để ab5 chia hết cho 25 thì b = 2 hoặc b=7
Nếu b = 2 thì a25 =a x 2 x 5 x 5 (loại ) vì a x 2 x 5 x 5 có hàng đơn vị là 0
Nếu b =7 thì a75 = a x 7 x 5 x 5
a x 100+ 75= a x 175
75 = a x 75
75 :75 = a =>a =1
Vậy số cần tìm là : 175
Gọi 2 chữ số đó là ab
ab:3=axb
=> ab = 24