K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Quá dễ Quá đơn giản

10 tháng 11 2017

giúp minh bài này với mai tớ nộp rùi

4 tháng 12 2021

m và n thuộc N*

4 tháng 12 2021

Tham khảo:D

 

 Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

22 tháng 7 2023

\(m^2-n^2=2m-2n\left(1\right)\)

\(\Rightarrow\left(m-n\right)\left(m+n\right)=2\left(m-n\right)\)

\(\Rightarrow\left(m-n\right)\left(m+n\right)-2\left(m-n\right)=0\)

\(\Rightarrow\left(m-n\right)\left(m+n-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m-n=0\\m+n-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=n\\m+n=2\end{matrix}\right.\)

Vậy (1) đúng khi \(m=n\) hay \(m+n=2\)

22 tháng 7 2023

Bạn xem lại đề.

A=2M-N-{M-[M-(M-2M)]}

\(=2M-N-\left\{M-M+M-2M\right\}=2M-N+M=3M-N\)

\(=9x^2-3axy^2+24xy-6+3xy^2-4xy^2+8xy-1\)

\(=9x^2-xy^2\left(-3a-1\right)+32xy-7\)