Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x^ny^6}{x^5y^{n-2}}=x^{n-5}y^{8-n}\)
Để đây là phép chia hết thì n-5>=0và 8-n>=0
=>5<=n<=8
b: \(\dfrac{x^6y^{n+2}}{x^ny^4z^{n-3}}=x^{6-n}y^{n-4}z^{3-n}\)
Để đây là phép chia hết thì \(\left\{{}\begin{matrix}6-n>=0\\n-4>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow n\in\varnothing\)
c: \(\dfrac{\left(\dfrac{1}{2}x^5y^{7-n}\right)}{-2x^ny^3}=-\dfrac{1}{4}x^{5-n}y^{4-n}\)
Để đây là phép chia hết thì 5-n>=0 và 4-n>=0
=>n<=4
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
Ta có: x2 – x – 12 = x2 – x – 16 + 4
= (x2 – 16) – (x – 4)
= (x – 4).(x + 4) – (x – 4)
= (x – 4).(x + 4 – 1)
= (x – 4).(x + 3)
a, 15x3y5z : 5x2y3 = 3xy2z.
b, 12x4y2 : ( - 9xy2 ) = \(\frac{3}{4}x^3\).
c, ( 30x4y3 - 25x2y3 - 3x4y4 ) : 5x2y3 = \(6x^2-5-\frac{3}{5}x^2y.\)
d, ( 4x4 - 8x2y2 + 12x5y ) : ( - 4x2 ) = -x2 + 2y2 - 3x3y.
1 ) Ta có : \(2n^2+3n+3\)
\(=2n^2-n+4n-2+5\)
\(=n\left(2n-1\right)+2\left(2n-1\right)+5\)
\(=\left(n+2\right)\left(2n-1\right)+5\)
Để \(2n^2+3n+3⋮2n-1\)
\(\Leftrightarrow\left(n+2\right)\left(2n-1\right)+5⋮2n-1\)
\(\Leftrightarrow5⋮2n-1\)
Do \(n\in Z\Rightarrow2n-1\in Z\)
\(\Rightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow2n\in\left\{2;0;6;-4\right\}\)
\(\Rightarrow n\in\left\{1;0;3;-2\right\}\)
Vậy ...
Bài 2 :
a ) \(3x^2-3y^2+4x-4y=3\left(x^2-y^2\right)+4\left(x-y\right)=3\left(x-y\right)\left(x+y\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left[3\left(x+y\right)+4\right]=\left(x-y\right)\left(3x+3y+4\right)\)
b ) \(12x^2-3xy+8x-2y\)
\(=3x\left(4x-y\right)+2\left(4x-y\right)\)
\(=\left(3x+2\right)\left(4x-y\right)\)
c ) \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=\left(x^2-xz\right)\left(x+y\right)\)
\(=x\left(x-z\right)\left(x+y\right)\)
d ) \(xy+y-2x-2\)
\(=y\left(x+1\right)-2\left(x+1\right)\)
\(=\left(y-2\right)\left(x+1\right)\)
e ) \(x^3-3x^2+3x-9\)
\(=x^2\left(x-3\right)+3\left(x-3\right)\)
\(=\left(x^2+3\right)\left(x-3\right)\)
1.\(\left(2n^2+3n+3\right):\left(2n-1\right)=n+2\) dư 5 (đoạn này bạn tự chia nha)
Muốn \(2n^2+3n+3\)\(⋮2n-1\) thì \(5⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(5\right)\)
\(\Rightarrow2n-1=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow2n=\left\{-4;0;2;6\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
bài 2 nhờ Nguyễn Thanh Hằng hay Mysterious Person giải nha
tui đi học rồi
- \(A⋮B\Leftrightarrow\left[{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le3\\n\le2\\n\le1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2\\n=0;1\end{matrix}\right.\Leftrightarrow n=0;1\)
-\(A⋮B\Leftrightarrow\left[{}\begin{matrix}13x^4y^3⋮5x^ny^n\\-5x^3y^3⋮5x^ny^n\\6x^2y^2⋮5x^ny^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le4;n\le3\\n\le3\\n\le2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2;3\\n=0;1;2\end{matrix}\right.\Leftrightarrow n=0;1;2\)
*Trả lời:
a) Có vẻ như đề sai nên mình sửa lại:
\(2x^2y+2xy^2-x-y=\left(2x^2y+2xy^2\right)-\left(x+y\right)=2xy\cdot\left(x+y\right)-\left(x+y\right)=\left(2xy-1\right)\left(x+y\right)\)
b) \(8x^3-12x^2+6x-1=\left(2x\right)^3-3\cdot4x^2+3.2x-1=\left(2x-1\right)^3\)
c)\(4x^2-4xy+y^2-9=\left(4x^2-4xy+y^2\right)-9=\left(2x-y\right)^2-3^2=\left(2x-y-3\right)\left(2x-y+3\right)\)
e)\(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2y+y^2=\left(5x^2-y\right)^2\)
h)\(x^2-7xy+10y^2=x^2-2xy-5xy+10y^2=\left(x^2-2xy\right)-\left(5xy-10y^2\right)=x\left(x-2y\right)-5y\left(x-2y\right)=\left(x-5y\right)\left(x-2y\right)\)
\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)
Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó :
\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)
\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)
\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)
Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)
\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)
Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó :
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)
\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)
Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)
Chúc bạn học tốt ~