K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

E = - \(x^2\) + 2\(x\) - 1                                           

E = - (\(x^2\) - 2\(x\) + 1)

E = - (\(x\) - 1)2

(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0

Emax = 0 ⇔ \(x\) = 1

 

31 tháng 7 2023

Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.

Lấy đạo hàm của E theo x, ta được:

E' = -2x + 2

Đặt E' bằng 0 và tìm x:

-2x + 2 = 0
-2x = -2
x = 1

Vậy điểm tới hạn của E là x=1.

Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.

Lấy đạo hàm của C theo x, ta được:

C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)

Đặt C' bằng 0 và giải tìm x:

(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0

Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.

27 tháng 9 2019

a) 

Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)

\(\Leftrightarrow x^3-1+x+1⋮x-1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)

\(\Leftrightarrow x-1+2⋮x-1\)

Mà \(x-1⋮x-1\)

\(\Rightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)

Vậy \(x\in\left\{-1;0;2;3\right\}\)

27 tháng 9 2019

b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)

\(\Leftrightarrow2x^2-8x+10⋮2x-1\)

\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)

\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)

Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)

\(\Leftrightarrow2x-14⋮2x-1\)

\(\Leftrightarrow2x-1-13⋮2x-1\)

Mà \(2x-1⋮2x-1\)

\(\Rightarrow13⋮2x-1\)

\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm 

7 tháng 8 2020

bạn kiểm tra lại đề nhé! mình nghĩ A=(x+1)(x+2)(x+3)(x+6) thì đúng hơn

25 tháng 2 2018

a, \(A=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\)

=> \(A\ge-\frac{9}{4}\) dấu = xảy ra khi : \(x=\frac{-1}{2}\)

25 tháng 2 2018

b, \(B=x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)

=> \(B\ge-\frac{1}{4}\) dấu = <=> \(x=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

30 tháng 10 2019

a) Ta có: \(A=x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x^2-6x+9\right)+2\)

\(=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTNN của đa thức \(A=x^2-6x+11\) là 2 khi x=3

b) Ta có: \(B=x^2-4x+3\)

\(=x^2-4x+4-1\)

\(=\left(x^2-4x+4\right)-1\)

\(=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: GTNN của đa thức \(B=x^2-4x+3\) là -1 khi x=2

c) Ta có: \(C=x^2+5x\)

\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{25}{4}\)

\(=\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\)

Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\ge\frac{-25}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)

Vậy: GTNN của đa thức \(C=x^2+5x\)\(\frac{-25}{4}\) khi \(x=\frac{-5}{2}\)

d) Ta có: \(D=x^2+x+1\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy: GTNN của đa thức \(D=x^2+x+1\)\(\frac{3}{4}\) khi \(x=\frac{-1}{2}\)

e) Ta có: \(E=4x^2+4x-2\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1-3\)

\(=\left[\left(2x\right)^2+2\cdot2x\cdot1+1\right]-3\)

\(=\left(2x+1\right)^2-3\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\forall x\)

Dấu '='xảy ra khi

\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

Vậy: GTNN của đa thức \(E=4x^2+4x-2\) là -3 khi \(x=\frac{-1}{2}\)

g) Ta có: \(G=x^2-7x\)

\(=x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{14}-\frac{49}{14}\)

\(=\left(x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{4}\right)-\frac{49}{4}\)

\(=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\)

Ta có: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\ge\frac{-49}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{7}{2}\right)^2=0\Leftrightarrow x-\frac{7}{2}=0\Leftrightarrow x=\frac{7}{2}\)

Vậy: GTNN của đa thức \(G=x^2-7x\)\(\frac{-49}{4}\) khi \(x=\frac{7}{2}\)

30 tháng 10 2019

\(A=x^2-6x+11\)

\(A=x^2-2.x.3+3^2-3^2+11\)

\(A=\left(x^2-6x+3^2\right)-3^2+11\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\forall x\)

=>\(\left(x-3\right)^2\ge0\ge2\forall x\)

Min A = 2 khi \(\left(x-3\right)^2=0\)

=> \(x-3=0hayx=3\)

Vậy Min A = 2 khi x = 3

\(B=x^2-4x+3\)

\(B=x^2-2.x.2+2^2-2^2+3\)

\(B=\left(x^2-4x+2^2\right)-4+3\)

\(B=\left(x-2\right)^2-1\)

=> \(\left(x-2\right)^2-1\ge0\forall x\)

MIn B = -1 khi \(\left(x-2\right)^2=0\)

=>\(\left(x-2\right)=0hayx=2\)

Vậy Min B = -1 khi x= 2