![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x+5\)
\(=x^2+2.x.1+1+4\)
\(=\left(x+1\right)^2+4\ge4\)
Min \(=4\Leftrightarrow x+1=0\Rightarrow x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=\frac{4x+3}{x^2+1}\)
Min D :
\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)
\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)
\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Max D :
\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)
\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)
\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)
Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)
\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(P=4x\left(x-1\right)+10=4x^2-4x+10=\left(4x^2-4x+1\right)+9=\left(2x-1\right)^2+9\)
Vì: \(\left(2x-1\right)^2\ge0\)
=> \(\left(2x-1\right)^2+9\ge9\)
Vậy GTNN của P là 9 khi \(x=\frac{1}{2}\)
2) \(P=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x-\frac{1}{2}\right)^2\ge0\)
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của P là \(\frac{3}{4}\) khi \(x=\frac{1}{2}\)
3) \(P=x^2+5y^2-4xy+2y+5=\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y+1\right)^2+4\)
Vì; \(\left(x-2y\right)^2+\left(y+1\right)^2\ge0\)
=> \(\left(x-2y\right)^2+\left(y+1\right)^2+4\ge4\)
Vậy GTNN của P là 4 khi x=-2;y=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
\(D=\left(x^2-3x-x+3\right)\left(x^2-4x+5\right)\)
\(D=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(D=\left[\left(x^2-4x+4\right)-1\right]\left[\left(x^2-4x+4\right)+1\right]\)
\(D=\left[\left(x-2\right)^2-1\right]\left[\left(x-2\right)^2+1\right]\)
\(D=\left(x-2\right)^4-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2\right)^4=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(D\) là \(-1\) khi \(x=2\)
Chúc bạn học tốt ~