Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào link này nhé
https://h.vn/hoi-dap/question/519160.html?pos=1454413
pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)
\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)
\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)
Dấu "=" tự xét nhé
Ta có : \(\left(x^2-y^2\right)^2+4x^2y^2+x^2-2y^2=0\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-2.\left(x^2+y^2\right)+1=1-3x^2\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2=1-3x^2\le1\forall x\)
\(\Rightarrow\left(x^2+y^2-1\right)\le1\)
\(\Rightarrow-1\le x^2+y^2-1\le1\)
\(\Rightarrow0\le x^2+y^2\le2\)
\(C=x^2+y^2\) min tại \(x=y=0\)
\(C=x^2+y^2\)max tại \(x=0,y=\sqrt{2}\)
\(A=x-2y+3\Rightarrow x=A+2y-3\)
\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)
\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)
\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)
\(\Leftrightarrow-7A^2+42A-31\ge0\)
\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)
Làm tạm max, min chưa nhìn thấy điểm rơi :(
Với các số không âm \(a;b;c;d\) ta có:
\(a+b+c+d\ge4\sqrt[4]{abcd}\Rightarrow abcd\le\left(\frac{a+b+c+d}{4}\right)^4\)
Do \(x;y\) không âm \(\Rightarrow xy^2\ge0\Rightarrow P< 0\) nếu \(8-x-y< 0\) và \(P\ge0\) nếu \(8-x-y\ge0\Rightarrow P_{max}\) nếu có sẽ xảy ra khi \(8-x-y\ge0\)
Xét trường hợp \(8-x-y\ge0\) ta có:
\(P=4x.\frac{y}{2}.\frac{y}{2}\left(8-x-y\right)\le4\left(\frac{x+\frac{y}{2}+\frac{y}{2}+8-x-y}{4}\right)^4=64\)
\(\Rightarrow P_{max}=64\) khi \(\left\{{}\begin{matrix}x=\frac{y}{2}\\x=8-x-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Làm nốt min
\(P=xy^2\left(8-x-y\right)=xy^2.\left[8-\left(x+y\right)\right]\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\)
Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3.\sqrt[3]{abc}\)
\(\Leftrightarrow\left(\frac{a+b+c}{3}\right)^3\ge abc\)
Dấu " = " xảy ra <=> a=b=c
Áp dụng:\(P\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\ge\left(\frac{x+\frac{y}{2}+\frac{y}{2}}{3}\right)^3.\left(-16\right)=\left(\frac{12}{3}\right)^3.\left(-16\right)=4^3.\left(-16\right)=-1024\)Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}x+y=12\\x=\frac{y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=4\end{matrix}\right.\)
KL:.......................
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
ta có \(\left(x-y\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)cái này các bạn tự CM
\(\left(1-xy\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\left(1-xy\right)^2\le\left(1+x^2\right)^2\left(1+y^2\right)^2\)
\(\Rightarrow\left[\left(x-y\right)\left(1-xy\right)\right]\le\left[\left(1+x^2\right)\left(1+y^2\right)\right]\)cái dấu ngặc vuông là chỉ dấu giá trị tuyệt đối đấy mình ko biết đánh dấu giá trị tuyệt đối
\(\Rightarrow\left[\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\right]\le1\)
\(\Rightarrow-1\le\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\le1\)\(\Rightarrow-1\le A\le1\)