\(x;y\ge0\)\(.\)Tìm Min và Max

      

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

vào link này nhé

https://h.vn/hoi-dap/question/519160.html?pos=1454413

24 tháng 12 2017

cái ảnh ở cuối nhá

31 tháng 12 2017

ta có \(\left(x-y\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)cái này các bạn tự CM

         \(\left(1-xy\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)

      \(\Rightarrow\left(x-y\right)^2\left(1-xy\right)^2\le\left(1+x^2\right)^2\left(1+y^2\right)^2\)

      \(\Rightarrow\left[\left(x-y\right)\left(1-xy\right)\right]\le\left[\left(1+x^2\right)\left(1+y^2\right)\right]\)cái dấu ngặc vuông là chỉ dấu giá trị tuyệt đối đấy mình ko biết đánh dấu giá trị tuyệt đối

       \(\Rightarrow\left[\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\right]\le1\)

       \(\Rightarrow-1\le\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\le1\)\(\Rightarrow-1\le A\le1\)

31 tháng 12 2017

có z đâu b

NV
6 tháng 5 2019

Làm tạm max, min chưa nhìn thấy điểm rơi :(

Với các số không âm \(a;b;c;d\) ta có:

\(a+b+c+d\ge4\sqrt[4]{abcd}\Rightarrow abcd\le\left(\frac{a+b+c+d}{4}\right)^4\)

Do \(x;y\) không âm \(\Rightarrow xy^2\ge0\Rightarrow P< 0\) nếu \(8-x-y< 0\)\(P\ge0\) nếu \(8-x-y\ge0\Rightarrow P_{max}\) nếu có sẽ xảy ra khi \(8-x-y\ge0\)

Xét trường hợp \(8-x-y\ge0\) ta có:

\(P=4x.\frac{y}{2}.\frac{y}{2}\left(8-x-y\right)\le4\left(\frac{x+\frac{y}{2}+\frac{y}{2}+8-x-y}{4}\right)^4=64\)

\(\Rightarrow P_{max}=64\) khi \(\left\{{}\begin{matrix}x=\frac{y}{2}\\x=8-x-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

7 tháng 5 2019

Làm nốt min

\(P=xy^2\left(8-x-y\right)=xy^2.\left[8-\left(x+y\right)\right]\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\)

Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3.\sqrt[3]{abc}\)

\(\Leftrightarrow\left(\frac{a+b+c}{3}\right)^3\ge abc\)

Dấu " = " xảy ra <=> a=b=c

Áp dụng:\(P\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\ge\left(\frac{x+\frac{y}{2}+\frac{y}{2}}{3}\right)^3.\left(-16\right)=\left(\frac{12}{3}\right)^3.\left(-16\right)=4^3.\left(-16\right)=-1024\)Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}x+y=12\\x=\frac{y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=4\end{matrix}\right.\)

KL:.......................

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

27 tháng 11 2019

ơ bài nào v ...................

27 tháng 11 2019

Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B