K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2020

P = 2x2 + 12x + 9

= 2x2 + 12x + 18 - 9

= 2( x2 + 6x + 9 ) - 9

= 2( x + 3 )2 - 9 ≥ -9 ∀ x

Dấu "=" xảy ra khi x = -3

=> MinP = -9 <=> x = -3

24 tháng 11 2020

\(P=2x^2+12x+9=2\left(x^2+6x+9\right)-9\)

\(=2\left(x+3\right)^2-9\)

Vì \(2\left(x+3\right)^2\ge0\forall x;2\left(x+3\right)^2-9\ge-9\forall x\)

Vậy GTNN là -9 <=> x + 3 = 0 <=> x = -3

13 tháng 5 2019

\(A=\frac{12x-9}{x^2+2x+3}=\frac{12x^2+36x+27-12x^2-24x-36}{x^2+2x+3}\)

\(=\frac{3\left(4x^2+12x+9\right)-12\left(x^2+2x+3\right)}{x^2+2x+3}=\frac{3\left(2x+3\right)^2}{\left(x+1\right)^2+2}-12\ge-12\)

Vậy \(A_{min}=-12\) khi \(x=-\frac{3}{2}\)

NV
6 tháng 1 2022

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

15 tháng 4 2018

A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)

ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt    thì x2-8x+22 nhỏ nhất

SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)

GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4

vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4

B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)

Dặt \(\frac{1}{x}\)=t         ta có 

B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3       dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2

                                                                                                                            \(\Leftrightarrow\)\(\frac{1}{x}\)=2

                                                                                                                             \(\Leftrightarrow\)=\(\frac{1}{2}\)

vậy GTNN là -3 tại x=1/2

15 tháng 4 2018

2,a, GTNN      A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1

          do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1

dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6

vậy GTNN của A=-1 tại x=6

B,GTNN          B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1

DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1

dấu =xảy ra khi và chỉ khi 4(x+1)2=0

                                         \(\Leftrightarrow\)x=-1

vạy GTNN của B=-1 tại x=-1

C, GTLN           C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)

DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\)    2-  \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2

dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1

Vậy GTLN của c=2 tại x=1

26 tháng 6 2018

\(A=4x^2-12x+11\)

\(A=\left(2x\right)^2-2.2x.3+3^2+2\)

\(A=\left(2x-3\right)^2+2\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)

\(B=x^2-2x+y^2+4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Ta có:  \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)

\(A=-x^2-6x+1\)

\(\Rightarrow-A=x^2+6x-1\)

\(-A=\left(x^2+2.3x+3^2\right)-10\)

\(-A=\left(x+3\right)^2-10\)

\(\Rightarrow A=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amax=10\(\Leftrightarrow\)x= -3

Sửa đề:

\(B=-2x^2-8x-6\)

\(B=-2.\left(x^2+2.2x+2^2\right)+2\)

\(B=-2.\left(x+2\right)^2+2\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)

Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Bmax=2\(\Leftrightarrow x=-2\)

26 tháng 6 2018

Đề phải là tìm min mới đúng

a, A=4x2-12x+11

=(4x2-12x+9)+2

=(2x-3)2+2

Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2

Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2

Vậy Amin = 2 khi x=3/2

b, B=x2-2x+y2+4y+6

=(x2-2x+1)+(y2+4y+4)+1

=(x-1)2+(y+2)2+1

Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1,y=-2

Vậy Bmin = 1 khi x=1,y=-2

27 tháng 10 2022

a: \(=2\left(x^2+6x+4\right)\)

\(=2\left(x^2+6x+9-5\right)\)

\(=2\left(x+3\right)^2-10>=-10\)

Dấu = xảy ra khi x=-3

b: \(=-\left(x^2-10x-3\right)\)

\(=-\left(x^2-10x+25-28\right)\)

\(=-\left(x-5\right)^2+28< =28\)

Dấu = xảy ra khi x=5