K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

a: \(=2\left(x^2+6x+4\right)\)

\(=2\left(x^2+6x+9-5\right)\)

\(=2\left(x+3\right)^2-10>=-10\)

Dấu = xảy ra khi x=-3

b: \(=-\left(x^2-10x-3\right)\)

\(=-\left(x^2-10x+25-28\right)\)

\(=-\left(x-5\right)^2+28< =28\)

Dấu = xảy ra khi x=5

24 tháng 7 2021

A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5 

= ( y - 2 )^2 + 5 >= 5 

Dấu ''='' xảy ra khi y = 2 

Vậy GTNN A là 5 khi y = 2

B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTNN B là 3/4 khi x = 1/2 

C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 ) 

= 2 ( x - 3/2 )^2 - 9/2 >= -9/2 

Dấu ''='' xảy ra khi x = 3/2 

Vậy GTNN C là -9/2 khi x = 3/2 

24 tháng 7 2021

ありがとう

23 tháng 10 2021

a: ta có: \(P=x^2+10x+27\)

\(=x^2+10x+25+2\)

\(=\left(x+5\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-5

2 tháng 5 2017

đáng lẽ phải là x^2+2x+3 chứ bạn 

y-1=(3x^2+10x+11)/(x^2+2x+3)-1

y-1=(3x^2+10+11-x^2-2x-3)/(x^2+2x+3)

y-1=(2x^2+8x+8)/(x^2+2x+3)

y-1=2(x+2)^2/(x^2+2x+3)>=0

y>=1

=>Min y=1 khi x+2=0 hay x=-2 

y-4=(3x^2+10x+11)/(x^2+2x+3)-4

y-4=(3x^2+10x+11-4x^2-8x-12)/(x^2+2x+3)

y-4=(-x^2+2x-1)/(x^2+2x+3)

y-4=-(x-1)^2/(x^2+2x+3)<=0

y<=4 

=>Max y=4 khi x-1=0 hay x=1 

12 tháng 11 2017

tau dell biết

mi hỏi ngu như chó vậy, về hỏi cho xem nó có biết ko

21 tháng 7 2021

đúng thì like giúp mik nha bạn. Thx bạnundefined

21 tháng 7 2021

bạn ơi mình chưa có học căn bậc 4

18 tháng 9 2017

\(A=x^2-2x+50\)

\(A=x^2-2x+1+49\)

\(A=\left(x-1\right)^2+49\ge49\)

Dấu "=" xảy ra khi:

\(x=1\)

\(B=12x-x^2\)

\(B=-x^2+12x\)

\(B=-x^2+12x-36+36\)

\(B=-\left(x^2-12x+36\right)+36\)

\(B=-\left(x-6\right)^2+36\le36\)

Dấu "=" xảy ra khi:

\(x=6\)

\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(C=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(C=\left[x\left(x-6\right)+1\left(x-6\right)\right]\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(C=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)\)

\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

\(C=\left(x^2-5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi:

\(x^2-5x=0\)

\(\Rightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5 tháng 3 2019

bn lên mạng nhé!

k mk nhé!

thanks!

#conmiu#

19 tháng 10 2019

TA CO: A\(=x^4-10x^3+25x^2+12\)

\(=x^2\left(x^2-10x+25\right)+12\)

\(=x^2\left(x-5\right)^2+12\)

\(Do\)\(\left(x-5\right)^2\ge0\Rightarrow x^2\left(x-5\right)^2\ge0\)

\(\Rightarrow A\ge12\)

Dau''=''xay ra khi vµ chi khi:

\(\left(x-5\right)^2=0\)

\(\Rightarrow x-5=0\)

\(\Rightarrow x=5\)

Vay MAX A=12 khi x=5

20 tháng 10 2019

còn x bằng 0 nữa nhá

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)