K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

   Phòng GD-ĐT TP. Bắc Giang năm học 2015-2016

Bài 2:

a/  M=2x2+5y2-6xy+4x-10y+100
<=>M= 1/2(4x2+10y2-12xy+8x-20y+200)

<=>M=1/2[(4x2+9y2+4-12xy+8x-12y)+(y2-8y+16)+180]

<=>M=1/2[(2x-3y+2)2+(y-4)2+180]

<=>M=1/2(2x-3y+2)2+1/2(y-4)2+90

1/2(2x-3y+2)2+1/2(y-4)2 >=0

=> M >= 90
Dấu "=" xảy ra <=> (x,y)=(5;4)

Vậy min M là M=90 tại (x,y)=(5;4)

27 tháng 10

👍

27 tháng 6 2020

https://olm.vn/hoi-dap/detail/88061957704.html bạn tham khảo câu hỏi này 

27 tháng 6 2020

a) \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\left(x-2y+1\right)^2\ge0\)

      \(\left(y-3\right)^2\ge0\)

 \(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)với mọi x,y (ĐPCM)
b) \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\)

Vì \(\left(2x-1\right)^2\ge0\)

      \(\left(x-3y\right)^2\ge0\)

       \(\left(y-1\right)^2\ge0\)

 \(\Rightarrow\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\ge1>0\)vợi mọi x,y (ĐPCM)

27 tháng 7 2016

B=[(x - 2)(x - 5)](x2– 7x - 10) 
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100

=>(x2-7x)2\(\ge\) 100

GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7

27 tháng 7 2016

B = x2 - 4xy + 5y2 + 10x - 22y + 28 
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28 
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2 
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2 
GTNN B = 2, khi y=1, x=-3

11 tháng 6 2018

_______________Bài làm___________________

a, \(x^2+xy+y^2+1\)

\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)

Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\dfrac{3y^2}{4}\ge0\forall y\)

Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)

b, \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)

\(\left(y-3\right)^2\ge0\forall y\)

Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

c, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Do .........

tự làm ik