\(-x^2-5x+3\)

B=\(-2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

@Nguyễn Nhật Minh

@Aki Tsuki

@Phùng Khánh Linh

@Nào Ai Biết

@Nguyễn Thanh Hằng

@Mysterious Person

giúp mk với

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Bài 1:

\(A=-x^2-5x+3=\frac{37}{4}-(x^2+5x+\frac{25}{4})\)

\(=\frac{37}{4}-(x+\frac{5}{2})^2\)

\((x+\frac{5}{2})^2\geq 0\Rightarrow A=\frac{37}{4}-(x+\frac{5}{2})^2\leq \frac{37}{4}-0=\frac{37}{4}\)

Vậy A(max)\(=\frac{37}{4}\Leftrightarrow x=\frac{-5}{2}\)

---------------

\(B=-2x^2-7x+9=\frac{121}{8}-2(x^2+\frac{7}{2}x+\frac{49}{16})\)

\(=\frac{121}{8}-2(x+\frac{7}{4})^2\)

\((x+\frac{7}{4})^2\ge 0\Rightarrow B=\frac{121}{8}-2(x+\frac{7}{4})^2\leq \frac{121}{8}-2.0=\frac{121}{8}\)

Vậy B(max)\(=\frac{121}{8}\Leftrightarrow x=\frac{-7}{4}\)

Các câu còn lại bạn cũng làm tương tự.

8 tháng 10 2016

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1

GTNN D = 5/6

dài quá, nản quá

 

9 tháng 10 2016

tks bn

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

\(A=3x^2-5x+3=3(x^2-\frac{5}{3}x)+3\)

\(=3(x^2-\frac{5}{3}x+\frac{5^2}{6^2})+\frac{11}{12}=3(x-\frac{5}{6})^2+\frac{11}{12}\)

\((x-\frac{5}{6})^2\geq 0, \forall x\Rightarrow A\geq 3.0+\frac{11}{12}=\frac{11}{12}\)

Vậy A(min)$=\frac{11}{12}$ khi $x=\frac{5}{6}$

\(B=2x^2+2x+1=2(x^2+x+\frac{1}{4})+\frac{1}{2}\)

\(=2(x+\frac{1}{2})^2+\frac{1}{2}\geq 2.0+\frac{1}{2}=\frac{1}{2}\)

Vậy \(B_{\min}=\frac{1}{2}\) tại \((x+\frac{1}{2})^2=0\Leftrightarrow x=\frac{-1}{2}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

C)

\(C=2x^2+y^2+10x-2xy+27\)

\(=(x^2+10x+25)+(x^2+y^2-2xy)+2\)

\(=(x+5)^2+(x-y)^2+2\)

\((x+5)^2\ge 0, (x-y)^2\geq 0\Rightarrow C\geq 0+0+2=2\)

Vậy \(C_{\min}=2\) tại \(\left\{\begin{matrix} (x+5)^2=0\\ (x-y)^2=0\end{matrix}\right.\Leftrightarrow x=y=-5\)

9 tháng 10 2017

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

9 tháng 10 2017

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

6 tháng 9 2020

+) \(A=x^2+2x-9=x^2+2x+1-10=\left(x+1\right)^2-10\ge-10\)

Min A = -10 \(\Leftrightarrow x=-1\)

+) \(B=x^2+5x-1=x^2+5x+\frac{25}{4}-\frac{29}{4}=\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\ge\frac{-29}{4}\)

Min B = -29/4 \(\Leftrightarrow x=\frac{-5}{2}\)

+) \(C=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)

Min C = -4 \(\Leftrightarrow x=-2\)

+) \(D=x^2-8x+17=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Min D = 1 \(\Leftrightarrow x=4\)

+) \(E=x^2-7x+1=x^2-7x+\frac{49}{4}-\frac{45}{4}=\left(x-\frac{7}{2}\right)-\frac{45}{4}\ge-\frac{45}{4}\)

Min E = -45/4 \(\Leftrightarrow x=\frac{7}{2}\)

6 tháng 9 2020

A = x2 + 2x - 9 

= ( x2 + 2x + 1 ) - 10

= ( x + 1 )2 - 10 ≥ -10 ∀ x

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinA = -10 <=> x = -1

B = x2 + 5x - 1

= ( x2 + 5x + 25/4 ) - 29/4

= ( x + 5/2 )2 - 29/4 ≥ -29/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinB = -29/4 <=> x = -5/2

C = x2 + 4x

= ( x2 + 4x + 4 ) - 4

= ( x + 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinC = -4 <=> x = -2

D = x2 - 8x + 17

= ( x2 - 8x + 16 ) + 1

= ( x - 4 )2 + 1 ≥ 1 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MinD = 1 <=> x = 4

E = x2 - 7x + 1

= ( x2 - 7x + 49/4 ) - 45/4

= ( x - 7/2 )2 - 45/4 ≥ -45/4 ∀ x

Đẳng thức xảy ra <=> x - 7/2 = 0 => x = 7/2

=> MinE = -45/4 <=> x = 7/2

27 tháng 3 2020
https://i.imgur.com/zwAtPMZ.jpg
28 tháng 8 2018

mk gợi ý, phần còn lại tự làm 

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)

b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

c)  \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

d)  \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

e)  \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

28 tháng 8 2018

a) A = x2 + 2x + 5 

    = x2 + 2x + 1 + 4

    = ( x + 1 )2  + 4

Nhận xét :

( x + 1 )2 > 0 với mọi x 

=> ( x + 1 )2 + 4 > 4 

=> A > 4 

=> A min = 4

Dấu " = " xảy ra khi : ( x + 1 )2  =  0

                                  => x + 1 = 0

                                  => x = - 1

Vậy A min = 4 khi x = - 1

b) B = 4x2 + 4x + 11

= ( 2x )2 + 4x + 1 + 10

= ( 2x + 1 )2 + 10

Nhận xét :

( 2x + 1 )2 > 0 với mọi x

=> ( 2x + 1 )2 + 10 > 10

=> B  >  10

=> B min = 10

Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0

                               => 2x + 1 = 0

                                => x = \(\frac{-1}{2}\)

Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)

c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

       = [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]

        = ( x2 + 5x - 6 ) (  x2 + 5x + 6 )

       = ( x2 + 5x ) 2 - 62

        = ( x2  + 5x )2 - 36

Nhận xét : 

( x2 + 5x )2 > 0 với mọi x

=> ( x2 + 5x )2 - 36 > - 36

=> C > - 36

=> C min = - 36

Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0

                               => x2 + 5x = 0

                               => x ( x + 5 ) = 0

                               => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                              => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy C min = - 36 khi x = 0 hoặc x = - 5

d) D = x2 - 2x + y2 - 4y + 7

        = ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2

        = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét :

( x - 1 )2 > 0 với mọi x

( y - 2 )2 > 0 với mọi y

=> ( x - 1 )2 + ( y - 2 )2 > 0 

=> ( x - 1 )2 + ( y - 2 )2 + 2  >  2

=> D > 2

=> D min = 2

Dấu " = " xảy ra khi :  \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) 

                               => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                               => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy D min = 2 khi x = 1 và y = 2

Câu 3: 

\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}< =\dfrac{13}{12}\)

Dấu '=' xảy ra khi x=1/6

Bài 4: 

\(C=\left(x+y\right)^2-4\left(x+y\right)+1\)

=3^2-4*3+1

=9+1-12

=-2

22 tháng 7 2018

\(A=x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5\ge5\)

Vậy GTNN của A là 5 khi x = 5

\(B=4x^2+4x+9=4x^2+4x+1+8=\left(2x+1\right)^2+8\ge8\)

Vậy GTNN của B là 8 khi x = \(-\dfrac{1}{2}\)

\(C=9x^2-12x+20=9x^2-12+4+16=\left(3x-2\right)^2+16\ge16\)

Vậy GTNN của C là 16 khi x = \(\dfrac{2}{3}\)

\(D=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN của D là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\)

\(E=2x^2+3x+5=2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{31}{8}=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{31}{8}\ge\dfrac{31}{8}\)

Vậy GTNN của E là \(\dfrac{31}{8}\) khi x = \(-\dfrac{3}{4}\)

\(F=3x^2-7x+6=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{23}{12}=\left(x-\dfrac{7}{6}\right)^2\ge\dfrac{23}{12}\)Vậy GTNN của F là \(\dfrac{23}{12}\) khi x = \(\dfrac{7}{6}\)