K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Ta có:

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

7 tháng 11 2018

a/ \(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

Với mọi x ta có :

\(\left(x-10\right)^2\ge0\)

\(\Leftrightarrow\left(x-10\right)^2+1\ge1\)

\(\Leftrightarrow A\ge1\)

Dấu bằng xảy ra khi \(x=10\)

Vậy....

b/ \(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\)

Với mọi x ta có :

\(\left(x^2+5x\right)^2\ge0\)

\(\Leftrightarrow\left(x^2+5x\right)^2-36\ge-36\)

\(\Leftrightarrow D\ge-36\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+5x\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy..

c/ \(C=x^2-4xy+5y^2+10x-22y+2018\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2017\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+1992\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\)

Với mọi x ta có :

\(\left\{{}\begin{matrix}\left(x-2y+5\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\ge1992\)

\(\Leftrightarrow C\ge1992\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy..

2 tháng 7 2015

bạn sai đề nha. là x^2. 2x^2 thì k giải đc đâu

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Rightarrow MinC=2\Leftrightarrow y=1;x=-3\)

20 tháng 8 2018

a, +/  Có  \(A=4x-x^2+3=4x-x^2+4-1\)

                     \(=-\left(-2.2x+x^2+2^2\right)+1=1-\left(x-2\right)^2\)

            do  \(\left(x-2\right)^2\ge0\forall x\in R\Rightarrow A\le1\)

                          \(\Rightarrow maxA=1\)tại  \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

                            Vậy max A=1 tại x=2

      +/ Có \(B=x-x^2=2.\frac{1}{2}x-x^2-\frac{1}{4}+\frac{1}{4}\)

                     \(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)

              \(\Rightarrow A\le\frac{1}{4}\)do\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow maxB=\frac{1}{4}\)tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

              Vậy max B =\(\frac{1}{4}\)tại  x=\(\frac{1}{2}\)

     

12 tháng 7 2018

\(G=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+10\left(x-2y\right)+25+2\)

\(=\left[\left(x-2y\right)^2+2.5\left(x-2y\right)+25\right]+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Vì \(\hept{\begin{cases}\left(x-2y+5\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0}\)

\(\Rightarrow G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+3=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy Gmin = 2 khi x = -3, y = 1

21 tháng 10 2016

A = x2 - 6x + 11 = x2 - 6x + 9 + 2 = (x - 3)2 + 2 \(\ge\) 2

Min A = 2 <=> x = 3

B = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 \(\ge\) 1

Min B = 1 <=> x = 10

 

1 tháng 8 2017

Sửa 2x ^2 thành x^2 là đúng đề

Ta có:
x2-4xy+5y2+10x-22y+28 = x2-4xy+4y2+10x-20y+25 + y2-2y+1 +2= (x-2y+5)2 + (y-1)2 +2\(\ge\)2
dấu "=" xảy ra <=> y-1 =0 và x-2y+5 = 0 ==> x= -3;y=1

31 tháng 12 2016

ủa, cái đề này khác đề ở trên hả

Đặt biểu thức là A, ta có:

A=x2+x2-2.x.2y+(2y)2-(2y)2+5y2+10x-22y+28

A=x2+(x-2y)2+y2+10x-22y+28

A=x2+2.x.5+52-52+y2-2.y.11+112-112+28+(x-2y)2

A=(x+5)2+(y-11)2+(x-2y)2-118

-Vì 3 HĐT ở trên luôn lớn hơn hoặc bằng 0 với mọi x,y thuộc R, nên GTNN nhỏ nhất là -118 khi

(x+5)2=0=>x+5=0=>x=-5

(y-11)2=0=>y-11=0=>y=11

-Tới đây thì có vẻ nhu bạn đã cho đề sai òi

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1