K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

a/ \(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

Với mọi x ta có :

\(\left(x-10\right)^2\ge0\)

\(\Leftrightarrow\left(x-10\right)^2+1\ge1\)

\(\Leftrightarrow A\ge1\)

Dấu bằng xảy ra khi \(x=10\)

Vậy....

b/ \(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\)

Với mọi x ta có :

\(\left(x^2+5x\right)^2\ge0\)

\(\Leftrightarrow\left(x^2+5x\right)^2-36\ge-36\)

\(\Leftrightarrow D\ge-36\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+5x\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy..

c/ \(C=x^2-4xy+5y^2+10x-22y+2018\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2017\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+1992\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\)

Với mọi x ta có :

\(\left\{{}\begin{matrix}\left(x-2y+5\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\ge1992\)

\(\Leftrightarrow C\ge1992\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy..

27 tháng 9 2020

Ta có:

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

5 tháng 7 2016

\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)

\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)

2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho

T I C K cho mình nha mình cảm ơn

21 tháng 10 2016

A = x2 - 6x + 11 = x2 - 6x + 9 + 2 = (x - 3)2 + 2 \(\ge\) 2

Min A = 2 <=> x = 3

B = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 \(\ge\) 1

Min B = 1 <=> x = 10

 

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3

28 tháng 8 2021

\(A=x^2+2x+9y^2-6y+2018\)

\(=x^2+2x+1+9y^2-6y+1+2016\)

\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)

Dấu ''='' xảy ra khi x = -1 ; y = 1/3 

Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3 

b: \(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu '=' xảy ra khi x=0 hoặc x=-5

a: \(A=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

23 tháng 6 2018

MẶC DÙ TA CÓ A>HOẶC =0,,NHƯNG CHƯA THỂ KẾT LUẬN ĐƯỢC MIN CỦA A=0 VÌ KO TỒN TẠI  GIÁ TRỊ NÀO CỦA X ĐỂ A=0

\(\Leftrightarrow E=x^2-8x+16+4x^2-4x+1\)

\(\Leftrightarrow E=5x^2-12x+17\)

\(\Leftrightarrow E=5\left(x-\frac{6}{5}\right)^2+\frac{49}{5}\ge\frac{49}{5}\)

vậy GTNN của E=49/5 tại x=6/5