K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(A=5x^2-2x+7=5\left(x^2-\frac{2}{5}x+\frac{1}{25}-\frac{1}{25}\right)+7\)

\(=5\left(x-\frac{1}{5}\right)^2-\frac{1}{5}+7=5\left(x-\frac{1}{5}\right)^2+\frac{34}{5}\ge\frac{34}{5}\)

Dấu ''='' xảy ra khi x = 1/5

Vậy GTNN của A bằng 34/5 tại x = 1/5

\(C=x\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)+10\)

Đặt \(x^2-3x=t\)

\(t\left(t+2\right)+10=t^2+2t+10=t^2+2t+1+9=\left(t+1\right)^2+9\ge9\)

Dấu ''='' xảy ra khi \(x^2-3x+1=0\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\)

Vậy GTNN của C bằng 9 tại x = \(\frac{3\pm\sqrt{5}}{2}\)

Bài 2:

\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)

  Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

  Vậy \(A_{Min}=-2\) khi \(x=-1\)

Bài 1:

a) Ta có: \(2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)

19 tháng 8

B = 2\(x^2\) - 4\(x\) - 8

B = 2(\(x^2\) - 2\(x\) + 4)  - 16

B = 2(\(x-2\))2 - 16 

Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)

⇒ 2(\(x-2\)) - 16 ≥ -16 ∀ \(x\)

Dấu bằng xảy ra khi  (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)

Vậy Bmin = -16 khi \(x=2\)

19 tháng 8

Tìm min của C biết:

C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17

C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1

C = (\(x\) - y)2 + 2(\(x\) - y) + 1  + (y2 - 8y + 16) 

C = (\(x-y+1\))2 + (y - 4)2 

Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)

 

 

29 tháng 9 2019

\(B=2x^2-4x-8=2\left(x^2-2x-4\right)\)

\(=2\left(x^2-2x+1-5\right)\)

\(=2\left[\left(x-1\right)^2-5\right]\)

\(=2\left(x-1\right)^2-10\ge-10\)

Vậy \(B_{min}=-10\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(F=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x+4=t\)

\(\RightarrowĐT=t\left(t+2\right)=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

hay \(\left(x^2+5x+5\right)^2-1\ge-1\)

Vậy \(F_{min}=-1\Leftrightarrow x^2+5x+5=0\)

\(\Leftrightarrow x^2+5x+\frac{25}{4}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{5}{2}\\x=-\sqrt{\frac{5}{4}}-\frac{5}{2}\end{cases}}\)

29 tháng 9 2019

\(G=4x-x^2=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\le4\)

Vậy \(G_{max}=4\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(H=25-x-5x^2=-5\left(x^2+\frac{x}{5}-5\right)\)

\(=-5\left(x^2+2x.\frac{1}{10}+\frac{1}{100}-\frac{501}{100}\right)\)

\(=-5\left[\left(x+\frac{1}{10}\right)^2-\frac{501}{100}\right]\)

\(=-5\left(x+\frac{1}{10}\right)^2+\frac{101}{20}\le\frac{101}{2}\)

Vậy \(H_{max}=\frac{101}{2}\Leftrightarrow x+\frac{1}{10}=0\Leftrightarrow x=-\frac{1}{10}\)

28 tháng 12 2021

\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)

\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

18 tháng 12 2021

Bài 1:

\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)

Bài 2:

\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)

24 tháng 10 2021

\(B=2x\left(x-4\right)-10=2x^2-8x-10\)

\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

\(minB=-18\Leftrightarrow x=2\)

14 tháng 8 2021

a) \(x^2-x+x=4\)

\(x^2=4\)

\(x=\pm2\)

b) \(3x\left(x-5\right)-2\left(x-5\right)=0\)

\(\left(x-5\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) Ta có: \(a+b+c=5-3-2=0\)

\(\left[{}\begin{matrix}x=1\\x=\dfrac{c}{a}=\dfrac{-2}{5}\end{matrix}\right.\)

d) Đặt \(x^2=t\left(t\ge0\right)\) . Lúc đó phương trình trở thành :

\(t^2-11t+18=0\)

\(\left[{}\begin{matrix}t=9\left(tmđk\right)\\t=2\left(tmđk\right)\end{matrix}\right.\)

\(t=9\rightarrow x^2=9\rightarrow x=\pm3\)

\(t=2\rightarrow x^2=2\rightarrow x=\pm\sqrt{2}\)

 

 

a:Ta có: \(x\left(x-1\right)+x=4\)

\(\Leftrightarrow x^2-x+x=4\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

b: Ta có: \(3x\left(x-5\right)-2x+10=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)

c: Ta có: \(5x^2-3x-2=0\)

\(\Leftrightarrow5x^2-5x+2x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{5}\end{matrix}\right.\)

d: Ta có: \(x^4-11x^2+18=0\)

\(\Leftrightarrow x^4-9x^2-2x^2+18=0\)

\(\Leftrightarrow x^2\left(x^2-9\right)-2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

14 tháng 8 2021

a) x(x-1)+x=4

⇔x2=4⇔\(x=\pm2\)

b)3x(x-5)-2x+10=0

⇔3x(x-5)-2(x-5)=0

⇔(x-5)(3x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

c)5x2-3x-2=0

⇔ 5x(x-1)+2(x-1)=0

⇔ (x-1)(5x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{5}\end{matrix}\right.\)

d)x4-11x2+18=0

⇔ x2(x2-2)-9(x2-2)=0

⇔ (x2-2)(x2-9)=0

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm3\end{matrix}\right.\)

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)