Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Như này nha bạn
Akakakakaka,am,am
ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(\ge4+2+5=11\)
"=" tại x = y = 1/2
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
Đặt \(Z=\frac{2x}{1-x}+\frac{1-x}{x}\)
Áp dụng bđt Cô si với 2 số dương là \(\frac{2x}{1-x}\) và \(\frac{1-x}{x}\) ta có:
\(Z=\frac{2x}{1-x}+\frac{1-x}{x}\ge2.\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}=2.\sqrt{2}\)
Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\)
<=> 2x2 = (1 - x)2 <=> \(\sqrt{2x^2}=\sqrt{\left(1-x\right)^2}\Leftrightarrow\left|x.\sqrt{2}\right|=\left|1-x\right|\)
Mà theo đề bài 0 < x < 1 nên \(\begin{cases}x.\sqrt{2}>0\\1-x>0\end{cases}\)\(\Rightarrow\begin{cases}\left|x.\sqrt{2}\right|=x.\sqrt{2}\\\left|1-x\right|=1-x\end{cases}\)
Do đó, \(x.\sqrt{2}=1-x\Leftrightarrow x.\sqrt{2}+x=1\Leftrightarrow x.\left(\sqrt{2}+1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\)
Xét hiệu: \(y-Z=\left(\frac{2}{1-x}+\frac{1}{x}\right)-\left(\frac{2x}{1-x}+\frac{1-x}{x}\right)=\frac{2-2x}{1-x}+\frac{1-1+x}{x}=2+1=3\)
\(\Leftrightarrow y=Z+3=2.\sqrt{2}+3\)
Vậy Min y = \(2.\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)
soyeon_Tiểubàng giải, bạn học lớp 7 mà giải được toán lớp 9 luôn á?
tu Dk dau bai => y>0
\(y=\frac{x+1}{x-x^2}\)
yx^2-(y-1)x+1
delta(x)=(y-1)^2-4y=y^2-6y+1>=0
delta(y)=9-1=8
\(y1,2=3+-2\sqrt{2}\)
dieu kien can \(3-2\sqrt{2}\le0=>y\ge3+2\sqrt{2}\)
dieu kien du 0<(y-1)/y<1 hien nhien dung
Min y=3+2.can(2)
khi x=\(\frac{3+2\sqrt{2}-1}{2\left(3+2\sqrt{2}\right)}=\frac{1+\sqrt{2}}{3+2\sqrt{2}}\)
Nhóm hợp lí và áp dụng BĐT Bunhiacopxki , ta có
\(Y=\frac{2}{1-x}+\frac{1}{x}=\left(\frac{2}{1-x}+\frac{1}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\frac{2}{1-x}.\left(1-x\right)}+\sqrt{\frac{1}{x}.x}\right)^2\)
\(\Leftrightarrow Y\ge\left(\sqrt{2}+1\right)^2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{2}{\left(1-x\right)^2}=\frac{1}{x^2}\\0< x< 1\end{cases}}\Leftrightarrow x=\sqrt{2}-1\)
Vậy min Y = \(\left(\sqrt{2}+1\right)^2\) khi \(x=\sqrt{2}-1\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Sử dụng AM - GM dạng cộng mẫu :
\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)
\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)
\(=\frac{36}{x+y+z+6}\)
\(=\frac{36}{12}=3\)
Đẳng thức xảy ra tại ......
Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )
thứ 2 là wolfram alpha bảo không có minimize:
k mk nha rùi mk giải cho
Ta có: \(\hept{\begin{cases}x^2\ge0\\x+1>0\end{cases}\Rightarrow\frac{x^2}{x+1}\ge0}\)
Vậy min\(y=0\)khi \(x=0\)