\(M=\frac{8x^2+6xy}{x^2+y^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016
  • Tìm MAX \(M=\frac{8x^2+6xy}{x^2+y^2}=\frac{9\left(x^2+y^2\right)-\left(x^2-6xy+9y^2\right)}{x^2+y^2}=-\frac{\left(x-3y\right)^2}{x^2+y^2}+9\le9\)

Vậy .....................

  • Tìm MIN \(M=\frac{8x^2+6xy}{x^2+y^2}=\frac{-\left(x^2+y^2\right)+\left(9x^2+6xy+y^2\right)}{x^2+y^2}=\frac{\left(3x+y\right)^2}{x^2+y^2}-1\ge-1\)

Vậy ..........................

26 tháng 9 2018

Ta có:

\(M=\frac{8x^2+6xy}{x^2+y^2}\)

\(=\frac{9x^2+6xy+y^2-\left(x^2+y^2\right)}{x^2+y^2}\)

\(=\frac{\left(3x+y\right)^2}{x^2+y^2}-1\)

\(\ge-1\)

Dấu bằng xảy ra khi 3x=-y

28 tháng 8 2019

Cả tử và mẫu đồng bậc:)) Em thử nha, ko chắc..

Với y = 0 thì x khác 0 và \(P=\frac{8x^2}{x^2}=8\)

Với y khác 0, chia cả tử và mẫu của P cho y2. Ta có:

\(P=\frac{8\left(\frac{x}{y}\right)^2+6.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+1}\). Đặt \(\frac{x}{y}=t\)

Thế thì: \(P=\frac{8t^2+6t}{t^2+1}\)

Bí.

25 tháng 2 2020

biểu thức đã cho (=) (8-P)x2 + 6yx -Py2=0

tìm denta ra thì đc như sau: y2(-P2+8P+9) >=0  =) -P2+8P+9 >=0 

phần còn lại bấm máy tính ra kết quả là   -1=<P=<9

Min=-1  và Max=9 

27 tháng 7 2016

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

28 tháng 7 2016

Mk camon bn nhiều nha =))

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

16 tháng 5 2020

\(\Leftrightarrow y\left(x^2+1\right)=x^2-8x+7\)

\(\Leftrightarrow x^2\left(y-1\right)+8x+y-7=0\)(1)

=> y khác 1

Xem (1) là pt bậc 2 ẩn x

Xét \(\Delta\)rồi dùng miền giá trị là ra

NV
16 tháng 10 2019

2/

a/ ĐKXĐ:...

\(\Leftrightarrow x^2+\left(\frac{x}{x+1}\right)^2-2x.\frac{x}{x+1}+\frac{2x^2}{x+1}=1\)

\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)

\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)

Đặt \(\frac{x^2}{x+1}=a\Rightarrow a^2+2a-1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1+\sqrt{2}\\a=-1-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+1}=-1-\sqrt{2}\\\frac{x^2}{x+1}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+\left(1+\sqrt{2}\right)x+1+\sqrt{2}=0\\x^2-\left(\sqrt{2}-1\right)x+1-\sqrt{2}=0\end{matrix}\right.\)

Xấu quá, bạn tự giải tay pt bậc 2 này đi

b/ ĐKXĐ: \(-2\le x\le6\)

\(VT=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1+1\right)\left(6-x+x+2\right)}=4\)

\(VP=\left(x-3\right)^2+4\ge4\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}6-x=x+2\\x-3=0\end{matrix}\right.\)

Phương trình vô nghiệm

NV
16 tháng 10 2019

1/

\(\Leftrightarrow5x^2+2\left(3y+1\right)x+2y^2+2y-40=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-40\right)\)

\(=-y^2-4y+201=205-\left(y+2\right)^2\)

Để phương trình có nghiệm nguyên \(\Leftrightarrow\Delta'\) là số chính phương

\(\Rightarrow205-\left(y+2\right)^2=k^2\)

\(\Rightarrow k^2+\left(y+2\right)^2=205=3^2+14^2=6^2+13^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=\pm3\\y+2=\pm14\\y+2=\pm6\\y+2=\pm13\end{matrix}\right.\)

Thay ngược lại (1) tìm x

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại