\(5x^2+9y^2-12xy+24x-48y+2080\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

3y=z

\(S=5x^2+z^2-4xz-24x+16z+2080\)

\(S=\left(x-2z+8\right)^2+4x^2-40x+2080-8^2\)

\(S=\left(x-2z+8\right)^2+4\left(x-5\right)^2+2080-8^2-4.5^2\)

Smin =\(2080-8^2-4.5^2\)

24 tháng 12 2016

đề thi học kỳ của mình cũng có câu này

20 tháng 10 2015

\(4x^2+9y^2+64-12xy-48y+32x+x^2-8x+16+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=4 và y=\(\frac{16}{3}\)

Vậy MINP=2 <=> x=4;y=16/3

 

 

8 tháng 12 2018

\(5x^2+9y^2-12xy+24x-48y+2080=4x^2-2.2x.3y+9y^2+16\left(2x-3y\right)+64+x^2-8x+16+2000=\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x-4\right)^2+2000=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\)

Ta có \(\left(2x-3y+8\right)^2\ge0\)

\(\left(x-4\right)^2\ge0\)

Nên \(\left(2x-3y+8\right)^2+\left(x-4\right)^2\ge0\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\ge2000\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}2x-3y+8=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)

Vậy Min của \(5x^2+9y^2-12xy+24x-48y+2080\) là 2000 và xảy ra khi x=4 và y=\(\dfrac{16}{3}\)

1 tháng 12 2017

\(S=4x^2-12xy+9y^2+32x-48y+64+x^2-8x+16+2000\)

\(S=\left(2x-3y\right)^2+16\left(2x-3y\right)+64+\left(x^2+8x+16\right)+2000\)

\(S=\left(2x-3y+8\right)^{^2}+\left(x-4\right)^2+2000\ge2000\)

MinS = 2000 khi x = 4 và y = 16/3

1 tháng 12 2017

con số không đúng với đề bài bạn nha

9 tháng 10 2018

tiếp đi =))

9 tháng 10 2018

P = 5x2+9y2-12xy+24x-48y+82=(2x - 3y + 8)² + x² - 8x + 16 + 2 = (2x - 3y + 8)² + (x - 4)² + 2

=> min P = 2
dấu = xảy ra <=> 2x - 3y + 8 = 0 và x = 4 => y = \(\dfrac{16}{3}\)

vậy min P = 2
dấu = xảy ra <=> x = 4, y = \(\dfrac{16}{3}\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)