Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hướng dẫn thôi tự trình bày lại nhé
pt đầu bài \(\Leftrightarrow\)\(4x^2+9y^2+25+12xy+20x+30y=-3x^2+24x+36y+40\)
\(\Leftrightarrow\)\(\left(2x+3y+5\right)^2-12\left(2x+3y+5\right)+36=-3x^2+16\)
\(\Leftrightarrow\)\(\left(2x+3y-1\right)^2=-3x^2+16\le16\)
\(\Leftrightarrow\)\(-4\le2x+3y-1\le4\)\(\Leftrightarrow\)\(2\le2x+3y+5\le10\)
\(\Rightarrow\)\(\hept{\begin{cases}S_{min}=2\left(x=0;y=-1\right)\\S_{max}=10\left(x=0;y=\frac{5}{3}\right)\end{cases}}\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{54}{6xy}\)
Đặt \(\left\{{}\begin{matrix}2x=a\\3y=b\end{matrix}\right.\Rightarrow A=\frac{4}{a^2+b^2}+\frac{54}{ab}\)
\(A=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)
\(A=4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{52}{ab}\)
\(\ge\frac{16}{\left(a+b\right)^2}+\frac{52}{\frac{\left(a+b\right)^2}{4}}\ge4+52=56\)
\("="\Leftrightarrow a=b\Leftrightarrow2x=3y\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52}{\frac{\left(2x+3y\right)^2}{4}}\)
\(A\ge\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}\ge\frac{16}{4}+\frac{208}{4}=56\)
\(\Rightarrow A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy