Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)
\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)
\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)
\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)
Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Bạn kham khảo link này nhé.
Câu hỏi của Minh Đen - Toán lớp 8 - Học toán với OnlineMath
a) \(A=x^2+6x+1=\left(x^2+2\cdot x\cdot3+3^2\right)-8\)
\(=\left(x+3\right)^2-8\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> \(\left(x+3\right)^2-8\ge-8\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3
Vậy Amin = -8 khi x = -3
b) \(2x^2+10x-5=2\left(x^2+5x-\frac{5}{2}\right)\)
\(=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{35}{2}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\)
Vì (x + 5/2)2 \(\ge0\forall x\)
=> \(2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\ge-\frac{35}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 5/2)2 = 0 => x = -5/2
Vậy Bmin = -35/2 khi x = -5/2
c) \(x^2-5x=\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{25}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\)
Vì (x - 5/2)2 \(\ge\)0 với mọi x
=> \(\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
Dấu " = " xảy ra khi và chỉ khi (x - 5/2)2 = 0 => x = 5/2
Vậy Cmin = -25/4 khi x = 5/2
\(4x^2+4x+10=\left(2x+1\right)^2+9\)
Ma \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+9\ge9\)
\(\Rightarrow\frac{3}{4x^2+4x+10}\le\frac{3}{9}=\frac{1}{3}\)
(dau "=" xay ra khi x=\(\frac{-1}{2}\)
phần a ) là \(P\left(x\right)=x^7-80x^6-80x^5-80x^4\)\(+...+80x+5\)nha ình chép thiếu
a,\(=x^3+x^2-\left(31x^2+31x\right)\)
\(=x^2\left(x+1\right)-31x\left(x+1\right)\)
\(=\left(x^2-31x\right)\left(x+1\right)=\left(31^2-31^2\right)\left(31+1\right)=0\)
b, Phân tích 3 số hạng đầu ta có:\(=x^5-x^4-\left(14x^4-14x^3\right)=\left(x^4-14x^3\right)\left(x-1\right)=\left(14^4-14^4\right)\left(x-1\right)=0\)
Thay x= 14 vào ta có: \(-29.14^2+13.14=-5502\)
c, do x=9 => x+1=10; Thay vào ta có:
\(C=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+10\)
\(C=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-....+x^3+x^2-x^2-x+10\)
\(C=-x+10=-9+10=1\)
CHÚC BẠN HỌC TỐT.....
Làm lại nha. Cái trên làm sai rồi nha
25 A = 25(x² + y² - 4x - 4y + 10)
= (5x - 13)² + (5y - 14)² + 10(3x + 4y) - 115
≥ 10.19 - 115 = 75
<=> A ≥ 3
A = x² + y² - 4x - 4y + 10
≥ x² + [(19 - 3x)/4]² - 4x - 4.(19 - 3x)/4 + 10
= (1/16).(25x² - 130x + 217)
= (1/16).(5x - 13)² + 3 ≥ 3
Dấu = xảy ra tại x = 13/5; y = 14/5
\(A=x^3-30x-31x+1\)
=\(x^3-31x^2+x^2-31x+1\)
=\(x^2\left(x-31\right)+x\left(x-31\right)+1\)
=1(do x=31)
\(B= x^4 -17x^3 +17x^2 -17x + 20 tại x= 16\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
=\(x^3\left(x-16\right)+x^2\left(x-16\right)+x\left(x-16\right)-x+20\)
=-16+20=4
- Với \(x< 0\Rightarrow-10x>0\Rightarrow A=x^{10}-10x+10>0+0+10=10\) (1)
- Với \(x\ge0\) :
\(A=\left(x^{10}+1+1+1+1+1+1+1+1+1\right)-10x+1\)
\(A\ge10\sqrt[10]{x^{10}.1.1.1.1.1.1.1.1.1}-10x+1\)
\(A\ge10x-10x+1=1\) (2)
So sánh giá trị (1) và (2) ta có: \(A_{min}=1\) khi \(x=1\)