Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chỉ biết làm câu a thôi :
Mẫu của phân thức A dương mà tử âm nên Amin khi mẫu nhỏ nhất .Ta có :
\(\frac{x^2}{8}-2x+17=\left(\frac{x}{2\sqrt{2}}\right)^2-2.\frac{x}{2\sqrt{2}}.2\sqrt{2}+\left(2\sqrt{2}\right)^2+9\)
\(=\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2+9\ge9\Rightarrow\sqrt{\frac{x^2}{8}-2x+17}\ge\sqrt{9}=3\Rightarrow A_{min}=\frac{-3}{3}=-1\)khi :
\(\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2=0\Rightarrow\frac{x}{2\sqrt{2}}=2\sqrt{2}\Rightarrow x=8\)
\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)
\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\) điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
\(đkxđ\Leftrightarrow x\ge4\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)
\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)
Dùng bảng xét dấu nha
Sửa đề: \(B=\sqrt{\left(x-2023\right)^2}+\sqrt{\left(x-1\right)^2}\)
B=|x-2023|+|x-1|
=|x-2023|+|1-x|
=>B>=|x-2023+1-x|=2022
Dấu = xảy ra khi
(x-2023)(x-1)<=0
TH1: x-2023<=0 và x-1>=0
=>x<=2023 và x>=1
=>1<=x<=2023
TH2: x-2023>=0 và x-1<=0
=>x>=2023 hoặc x<=1
=>Loại
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)