K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

27 tháng 9 2023

\(F=\sqrt{-3x^2-6x+2}\left(Đk:-1-\sqrt{\dfrac{5}{3}}\le x\le\sqrt{\dfrac{5}{3}}-1\right)\)

\(=\sqrt{-\left(3x^2+6x+3\right)+5}\)

\(=\sqrt{-3\left(x+1\right)^2+5}\)

Vì \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow F\le\sqrt{5}\)

\(MaxF=\sqrt{5}\Leftrightarrow x=-1\)

27 tháng 9 2023

Bài này có thể tìm Min không anh?

2 tháng 1

Ta có: \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left|y-5\right|\ge0\forall x,y\)

\(\Rightarrow10+\left(x-3\right)^2+\left|y-5\right|\ge10\forall x,y\)

\(\Rightarrow D=-10-\left(x-3\right)^2-\left|y-5\right|\le-10\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-3=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)

Vậy \(Max_D=-10\) khi \(x=3;y=5\).

NV
2 tháng 1

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Áp dụng:

\(A=\left(x+3\right)^4+\left(7-x\right)^4\ge\dfrac{1}{2}\left[\left(x+3\right)^2+\left(7-x\right)^2\right]^2\)

Tiếp tục áp dụng BĐT ban đầu trong 2 số hạng trong ngoặc vuông:

\(\Rightarrow A\ge\dfrac{1}{2}\left[\dfrac{1}{2}\left(x+3+7-x\right)^2\right]^2=1250\)

Dấu "=" xảy ra khi \(x+3=7-x\Rightarrow x=2\)

Vậy \(A_{min}=1250\) khi \(x=2\)

Không tồn tại A max

7 tháng 7 2016
  • Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi a,b cùng dấu. Được : \(\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\ge\left|2015-x+x+2016\right|=4031\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2015-x\ge0\\2016+x\ge0\end{cases}\Leftrightarrow}-2016\le x\le2015\)

Vậy Min = 4031 <=> \(-2016\le x\le2015\)